近期,一篇CVPR(计算机视觉与模式识别)论文复现的争议引起了广泛关注。面对这一复现争议,一支由华人研究人员组成的团队经过长达两个月的苦战,最终给出了一份有态度的分析结果。本文将详细介绍他们的研究过程和使用的PyTorch源代码。
复现研究一直是科学界的重要环节,能够验证和确保先前研究的可靠性。然而,由于不同团队之间的实验条件和代码实现的差异,复现过程常常面临困难。最近,一篇在CVPR上发表的论文引发了较大的争议,有学者质疑其结果的可靠性。为了解决这一争议并为学术界提供更清晰的结论,华人研究人员组成了一个团队,决定对该论文进行复现研究。
复现团队首先详细研读了原始论文,并尽可能收集了与该研究相关的代码和数据集。他们发现,原始论文中的代码实现使用了TensorFlow框架,而复现团队在实验中更加熟悉PyTorch框架。为了确保复现结果的准确性,他们决定将原始代码转换为PyTorch实现,并进行适当的调整以适应不同的实验条件。
复现团队在复现过程中遇到了一些挑战。由于原始论文中提供的细节有限,他们需要根据自己的理解进行一些假设和推断。这些推断可能会对复现结果产生一定的影响。为了减小这种影响,复现团队尽可能地与原始作者进行沟通,并在需要时请教其他领域的专家。
经过两个月的艰苦努力,复现团队最终得出了一份有态度的分析结果。他们发现,在使用PyTorch进行复现后,与原始论文中报告的结果存在一些差异