K-Means聚类算法中的K如何选择?Elbow方法如何实施?Python实现
K-Means是一种常用的无监督学习算法,用于将数据集划分为K个不同的簇。选择正确的K值对于聚类的效果至关重要,而Elbow方法是一种常用的技术,用于帮助我们选择合适的K值。在本文中,我们将详细介绍K-Means算法中K的选择以及如何使用Elbow方法来实施它,同时提供Python代码示例。
K的选择是K-Means算法中的一个关键问题。K代表我们希望将数据集划分为的簇的数量。选择一个合适的K值是一个挑战,因为选择过小的K值可能导致簇之间的重叠,而选择过大的K值可能导致簇内部的相似性降低。为了解决这个问题,我们可以使用Elbow方法。
Elbow方法基于簇内误差平方和(SSE)来评估不同K值下的聚类效果。SSE是每个样本与其所属簇中心的距离的平方和。当K值增加时,SSE往往会减小,因为更多的簇意味着每个样本离其所属簇中心更近。但是,随着K值继续增加,SSE的减少速度会减缓。在某个特定的K值处,这种减少的速度会明显变缓,形成一个拐点,类似于手肘的形状,因此被称为Elbow方法。
下面是如何使用Elbow方法选择K值的Python代码示例:
import matplotlib