LeetCode(4.寻找两个有序数组的中位数[困难])—二分法

题目

给定两个大小为 m 和 n 的正序(从小到大)数组 nums1 和 nums2。

请你找出这两个正序数组的中位数,并且要求算法的时间复杂度为 O(log(m + n))。

你可以假设 nums1 和 nums2 不会同时为空。

示例 1:

nums1 = [1, 3]
nums2 = [2]

则中位数是 2.0
示例 2:

nums1 = [1, 2]
nums2 = [3, 4]

则中位数是 (2 + 3)/2 = 2.5

题目解析及优化

  1. 如果不看时间复杂度的话,这是以到比较简单的题,常见的做法有:

    • 两序列合并为一个序列,排序,找中位数。(没有利用两个正序的条件)
    • 用双指针分别指向两个正序的开头,指向元素小的移动,寻找中位数。(比第一种方法好一些,但是时间复杂度依旧是O(m+n))
  2. 如果时间复杂度要达到log级别的,应该想到二分法去解决。其实我们的主要难点是如何寻找第k小的数字,解决这个问题之后,中位数就只是一个总长度奇偶的两个if-else语句了。

    首先我们要明白第k小的数的含义是什么,是排在第k个位置的数,再换句话说,整个序列要有k-1比他小,发现问题了?我们只要找到一个数,没有一半的数比它小,那么它和比它小的就一定不是第k小的数。

    举个例子,寻找第k小的数字,如果一个数a最多只有k-2个数比它小,那么a是第k-1小的数字,那么a和比a小的就可以直接排除。排除掉k-1个数字之后,接下来寻找的就应该是剩余数组的 (k-(k-1)) = 1个数字。这就是大体的思路。

    举个例子加深一下理解,数组1:1,3,5,7,9。数组2:2,4,6,8;

    • 首先我们明确应该找第5小的数字,同时取两个数组里面的第k/2项,即3和4,3<4,就算4前面的2小于3,最多也只能有(k/2-1+k/2-1) = k-2 项(这里由于是奇数会少一项为2)比3小,那么3和3之前的1被排除。

      • 想一想为什么不一起排除4前面的2呢?

        因为目前只能排除3和比3小的,3和4前面的2在一般情况下的大小关系是不确定的,不能随意排除。

    • 之后就变成了寻找数组1:5,7,9;和数组2:2,4,6,8中的第3小的数字,比较2和5,排除2

    • 寻找数组1:5,7,9;和数组2:,4,6,8中的第2小的数字,比较4和5,排除4;

    • 寻找数组1:5,7,9;和数组2:6,8中的第1小的数字,比较6和5,取出5即是答案。

    思想和方法有了,之后是代码如何写,首先是循环结束的条件:

    • 当一个数组没有元素之后,直接返回另一个数组的所需要的第K个数即可。(这里的K和开始的k不是一个k)
    • 当两数组都一直有元素的时候,当k为1的时候,返回两数组第一个元素的较小值。

    接着就是下标的移动,当第k/2项较小的那个数组的初始下标要更新,最后是k值的更新。

    代码如下:

    double find_k_num(vector<int> &nums1, vector<int> &nums2, int k) {
        int index1 = 0, index2 = 0, l1 = nums1.size(), l2 = nums2.size();
        while (true) {
            if (index1 == l1)return nums2[index2 + k - 1];
            if (index2 == l2)return nums1[index1 + k - 1];
            if (k == 1) {
                return min(nums1[index1], nums2[index2]);
            }
            int half_k = k / 2;
            int newindex1 = min(index1 + half_k - 1, l1 - 1);
            int newindex2 = min(index2 + half_k - 1, l2 - 1);
            int num1 = nums1[newindex1];
            int num2 = nums2[newindex2];
            if (num1 <= num2) {
                k = k - newindex1 + index1 - 1;
                index1 = newindex1 + 1;
            } else {
                k = k - newindex2 + index2 - 1;
                index2 = newindex2 + 1;
            }
        }
    }
    
    double findMedianSortedArrays(vector<int> &nums1, vector<int> &nums2) {
        int k = nums1.size() + nums2.size();
        if (k % 2 == 1) {
            return find_k_num(nums1, nums2, k / 2 + 1);
        } else {
            return (find_k_num(nums1, nums2, k / 2) + find_k_num(nums1, nums2, k / 2 + 1)) / 2;
        }
    }
    

    在自己写这个代码的时候有几点困难踩坑的地方:

    • 在判断返回条件的时候,k==1这个条件要放在前两个之后;
    • 第一个函数最好写成double类型的返回值,否则涉及小数点有时会出错;
  3. 划分数组

    我们回归到中位数的性质上,上次用的性质是中位数把数组分为两个集合,一个都比中位数小,一个都比中位数大。这次用到的性质是,中位数把数组分为元素数量相等或者差距为1的集合的两个集合,一个集合中的最大值小于等于另一个集合的最小值。

    我们假设数组A的长度为m,数组B的长度为n,且A的长度小于B的长度。设定整数0<i<=m,0<j<=n(这里可以等于0和长度是可以将整个数组都划分到右或者左边)

    用 i 将A数组划分为两个部分 A_left , A_right , j将B分为 B_left 和 B_right 。由于A的长度小于B的长度,所以不管i取多少,总有j存在使得

    len ( A_left + B_left ) = len ( A_right + B_right ) (+1总长度为奇数的时候)

    其实i和j就是一个此消彼长的过程,二者变化的时候始终保持着划分的左右两部分长度满足上式。

    接下来就是左边总小于右边的问题了,其实只要两个等式成立即可。

    A [ i - 1 ] < B [ j ]

    B [ j - 1 ] < A [ i ]

    其实问题现在就变成了在A中找一个合适的点满足上述式子即可。如果从头到尾遍历的话时间复杂度又是min ( m , n ),其实找点的时候可以用二分法查找。

    继续代码的写法:

    • 由于必须在较短的数组里面寻找,所以如果不符合条件,要交换AB;
    • 用二分法找i的时候,i 和 j 满足式子j = ( m+ n + 1 ) / 2 − i ,
    • 当i和j为0或者对应数组的长度时,处理月结问题,保证不会最值大小的判断,就是取相应的无穷大和无穷小即可。
    • 对于边界收缩的判断,举个例子:如果A_left的最大值大于B_right的最小值,那么 i 就取的过大了,收缩右边界,否则是合理的,收缩左边界即可,在收缩左边界的时候,注意最值的保存。

    代码如下:

    class Solution {
    public:
        double findMedianSortedArrays(vector<int> &nums1, vector<int> &nums2) {
            if (nums1.size() > nums2.size()) {
                return findMedianSortedArrays(nums2, nums1);
            }
            int m = nums1.size(), n = nums2.size();
            int left = 0, right = nums1.size();
            int left_max, right_min;
            while (left <= right) {
                int i = (left + right) / 2;
                int j = (m + n + 1) / 2 - i;
                int num_i_1 = i == 0 ? -10000000 : nums1[i - 1];
                int num_i = i == m ? 10000000 : nums1[i];
                int num_j_1 = j == 0 ? -10000000 : nums2[j - 1];
                int num_j = j == n ? 10000000 : nums2[j];
                if (num_i_1 > num_j) {
                    right = i - 1;
                } else {
                    left_max = max(num_i_1, num_j_1);
                    right_min = min(num_i, num_j);
                    left = i + 1;
                }
    
            }
            return (m + n) % 2 == 0 ? (left_max + right_min) / 2.0 : left_max;
        }
    };
    

    上述解法的时间复杂度是O(log(min(m,n))) ,比第一种解法还要省时间。

心得及总结

  • 本题作为一道困难难度的题目,难度在于如何将时间复杂度降下来,而解题的关键是如何运用题中的正序的条件,这道题的主要思想就是二分法,而二分法的使用大多要求集合排序是有规律的。理解本题之后对于二分法也会有更深的理解;
  • 对于一道题而言,要对题目的每个信息理解透彻,例如本题中的中位数到底可以怎么用,如何转化成用编程语言表达的大小,理解的程度困难会直接影响题目的解答;
  • 在看完大神的思路之后,代码一定要自己写一次,写的时候会发现很多细节地方,这些细节可以帮助我们的思考变得更细致;
  • 在第一种解法中,三种结束的条件的先后顺序是有讲究的,以后在遇到多种结束条件的时候要多思考顺序是否可以互换;
  • 函数的返回值类型,有时候需要格外注意,像上面第一种解法的时候,虽然findMedianSortedArrays的返回值是double类型的,但是奈何里面的函数是int类型的函数而导致输出的其实是去过尾的整数导致的错误。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值