Datawhale数据挖掘 特征工程笔记

特征工程

1. 特征工程

数据和特征决定了机器学习的上限,而模型和算法只是逼近这个上限而已。那特征工程到底是什么呢?顾名思义,其本质是一项工程活动,目的是最大限度地从原始数据中提取特征以供算法和模型使用。

常见的特征工程包括:

  1. 异常处理:
    • 通过箱线图(或 3-Sigma)分析删除异常值;
    • BOX-COX 转换(处理有偏分布);
    • 长尾截断;
  2. 特征归一化/标准化:
    • 标准化(转换为标准正态分布);
    • 归一化(抓换到 [0,1] 区间);
    • 针对幂律分布,可以采用公式: l o g ( 1 + x 1 + m e d i a n ) log(\frac{1+x}{1+median}) log(1+median1+x)
  3. 数据分桶:
    • 等频分桶;
    • 等距分桶;
    • Best-KS 分桶(类似利用基尼指数进行二分类);
    • 卡方分桶;
  4. 缺失值处理:
    • 不处理(针对类似 XGBoost 等树模型);
    • 删除(缺失数据太多);
    • 插值补全,包括均值/中位数/众数/建模预测/多重插补/压缩感知补全/矩阵补全等;
    • 分箱,缺失值一个箱;
  5. 特征构造:
    • 构造统计量特征,报告计数、求和、比例、标准差等;
    • 时间特征,包括相对时间和绝对时间,节假日,双休日等;
    • 地理信息,包括分箱,分布编码等方法;
    • 非线性变换,包括 log/ 平方/ 根号等;
    • 特征组合,特征交叉;
    • 仁者见仁,智者见智。
  6. 特征筛选
    • 过滤式(filter):先对数据进行特征选择,然后在训练学习器,常见的方法有 Relief/方差选择发/相关系数法/卡方检验法/互信息法;
    • 包裹式(wrapper):直接把最终将要使用的学习器的性能作为特征子集的评价准则,常见方法有 LVM(Las Vegas Wrapper) ;
    • 嵌入式(embedding):结合过滤式和包裹式,学习器训练过程中自动进行了特征选择,常见的有 lasso 回归;
  7. 降维
    • PCA/ LDA/ ICA;
    • 特征选择也是一种降维。

2. 特征工程常用操作

2.1 环境搭建
import pandas as pd
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import seaborn as sns
from operator import itemgetter
# 使用ide因此注释这句
# %matplotlib inline

# 导入数据
train = pd.read_csv('train.csv', sep=' ')
test = pd.read_csv('testA.csv', sep=' ')
print(train.shape)
print(test.shape)

注:%matplotlib作用:
是在使用jupyter notebook 或者 jupyter qtconsole的时候,才会经常用到%matplotlib,也就是说那一份代码可能就是别人使用jupyter notebook 或者 jupyter qtconsole进行编辑的。
而%matplotlib具体作用是当你调用matplotlib.pyplot的绘图函数plot()进行绘图的时候,或者生成一个figure画布的时候,可以直接在你的python console里面生成图像。
如果用pycharm作图,需后加plt.show()

2.2 异常值处理
def box_plot_outliers(data_ser, box_scale):
    """
    利用箱线图去除异常值
    :param data_ser: 接收 pandas.Series 数据格式
    :param box_scale: 箱线图尺度,
    :return:
    """
    iqr = box_scale * (data_ser.quantile(0.75) - data_ser.quantile(0.25))
    val_low = data_ser.quantile(0.25) - iqr
    val_up = data_ser.quantile(0.75) + iqr
    rule_low = (data_ser < val_low)
    rule_up = (data_ser > val_up)
    return (rule_low, rule_up), (val_low, val_up)

def outliers_proc(data, col_name, scale=3):
    """
    用于清洗异常值,默认用 box_plot(scale=3)进行清洗
    :param data: 接收 pandas 数据格式
    :param col_name: pandas 列名
    :param scale: 尺度
    :return:
    """
    data_n = data.copy()
    data_series = data_n[col_name]
    rule, value = box_plot_outliers(data_series, box_scale=scale)
    index = np.arange(data_series.shape[0])[rule[0] | rule[1]]
    print("Delete number is: {}".format(len(index)))
    data_n = data_n.drop(index)
    data_n.reset_index(drop=True, inplace=True)
    print("Now column number is: {}".format(data_n.shape[0]))
    index_low = np.arange(data_series.shape[0])[rule[0]]
    outliers = data_series.iloc[index_low]
    print("Description of data less than the lower bound is:")
    print(pd.Series(outliers).describe())
    index_up = np.arange(data_series.shape[0])[rule[1]]
    outliers = data_series.iloc[index_up]
    print("Description of data larger than the upper bound is:")
    print(pd.Series(outliers).describe())
    
    fig, ax = plt.subplots(1, 2, figsize=(10, 7))
    sns.boxplot(y=data[col_name], data=data, palette="Set1", ax=ax[0])
    sns.boxplot(y=data_n[col_name], data=data_n, palette="Set1", ax=ax[1])
    return data_n

调用示例:

# 此处删掉一些异常数据,以 power 为例。  
# 这里删不删同学可以自行判断
# 但是要注意 test 的数据不能删

train = outliers_proc(train, 'power', scale=3)
2.3 特征构造
  • 训练集和测试集放在一起,方便构造特征
train['train']=1
test['train']=0
# ignore_index连接时若两者shape不一样用NAN填充
data = pd.concat([train, test], ignore_index=True, sort=False)

concat用法参考链接:https://blog.csdn.net/mr_hhh/article/details/79488445

  • 这里使用时间:data[‘creatDate’] - data[‘regDate’],反应汽车使用时间,一般来说价格与使用时间成反比
    不过要注意,数据里有时间出错的格式,所以我们需要 errors=‘coerce’
    注意:这里的errors='coerce’将超出NaT的日期格式,强制返回NaT
data['used_time'] = (pd.to_datetime(data['creatDate'], format='%Y%m%d', errors='coerce') - pd.to_datetime(data['regDate'], format='%Y%m%d', errors='coerce')).dt.days
  • 可以通过某列信息提取出重要数据特征
# 从邮编中提取城市信息,因为是德国的数据,所以参考德国的邮编,相当于加入了先验知识
data['city'] = data['regionCode'].apply(lambda x : str(x)[:-3])
  • 计算某品牌的销售统计量,这里以 train 的数据计算统计量
train_gb = train.groupby("brand")
all_info = {}
for kind, kind_data in train_gb:
    info = {}
    kind_data = kind_data[kind_data['price'] > 0]
    info['brand_amount'] = len(kind_data)
    info['brand_price_max'] = kind_data.price.max()
    info['brand_price_median'] = kind_data.price.median()
    info['brand_price_min'] = kind_data.price.min()
    info['brand_price_sum'] = kind_data.price.sum()
    info['brand_price_std'] = kind_data.price.std()
    info['brand_price_average'] = round(kind_data.price.sum() / (len(kind_data) + 1), 2)
    all_info[kind] = info
brand_fe = pd.DataFrame(all_info).T.reset_index().rename(columns={"index": "brand"})
data = data.merge(brand_fe, how='left', on='brand')
  • 数据分桶 以 power 为例,对分区数据或者表数据做细粒度的管理。为什么要做数据分桶呢,原因如下:
  1. 离散后稀疏向量内积乘法运算速度更快,计算结果也方便存储,容易扩展;
  2. 离散后的特征对异常值更具鲁棒性,如 age>30 为 1 否则为 0,对于年龄为 200 的也不会对模型造成很大的干扰;
  3. LR 属于广义线性模型,表达能力有限,经过离散化后,每个变量有单独的权重,这相当于引入了非线性,能够提升模型的表达能力,加大拟合;
  4. 离散后特征可以进行特征交叉,提升表达能力,由 M+N 个变量编程 M*N 个变量,进一步引入非线形,提升了表达能力;
  5. 特征离散后模型更稳定,如用户年龄区间,不会因为用户年龄长了一岁就变化
  6. LightGBM 在改进 XGBoost 时就增加了数据分桶,增强了模型的泛化性
bin = [i*10 for i in range(31)]
data['power_bin'] = pd.cut(data['power'], bin, labels=False)
data[['power_bin', 'power']].head()
  • 对其取 log,在做归一化
    服从长尾分布的都建议先取log再归一化
from sklearn import preprocessing
min_max_scaler = preprocessing.MinMaxScaler()
data['power'] = np.log(data['power'] + 1) 
data['power'] = ((data['power'] - np.min(data['power'])) / (np.max(data['power']) - np.min(data['power'])))
data['power'].plot.hist()
  • 对类别特征进行 OneEncoder
    one-hot的基本思想:将离散型特征的每一种取值都看成一种状态,若你的这一特征中有N个不相同的取值,那么我们就可以将该特征抽象成N种不同的状态,one-hot编码保证了每一个取值只会使得一种状态处于“激活态”,也就是说这N种状态中只有一个状态位值为1,其他状态位都是0。
    1、离散特征的取值之间没有大小的意义,比如color:[red,blue],那么就使用one-hot编码
    2、离散特征的取值有大小的意义,比如size:[X,XL,XXL],那么就使用数值的映射{X:1,XL:2,XXL:3}
data = pd.get_dummies(data, columns=['model', 'brand', 'bodyType', 'fuelType','gearbox', 'notRepairedDamage', 'power_bin'])

特征提取get_dummies参考:https://www.jianshu.com/p/5f8782bf15b1

2.4 特征筛选
  • 过滤式
      过滤式方法先对数据集进行特征选择,然后再训练学习器。特征选择过程与后续学习器无关,这相当于先对初始特征进行“过滤”,再用过滤后的特征训练模型。
      过滤式选择的方法有:
      1. 移除低方差的特征;
      2. 相关系数排序,分别计算每个特征与输出值之间的相关系数,设定一个阈值,选择相关系数大于阈值的部分特征;
      3. 利用假设检验得到特征与输出值之间的相关性,方法有比如卡方检验、t检验、F检验等。
      4. 互信息,利用互信息从信息熵的角度分析相关性。
# 相关性分析
print(data['power'].corr(data['price'], method='spearman'))
print(data['kilometer'].corr(data['price'], method='spearman'))
print(data['brand_amount'].corr(data['price'], method='spearman'))
print(data['brand_price_average'].corr(data['price'], method='spearman'))
print(data['brand_price_max'].corr(data['price'], method='spearman'))
print(data['brand_price_median'].corr(data['price'], method='spearman'))

#可视化
data_numeric = data[['power', 'kilometer', 'brand_amount', 'brand_price_average', 'brand_price_max', 'brand_price_median']]
correlation = data_numeric.corr()

f , ax = plt.subplots(figsize = (7, 7))
plt.title('Correlation of Numeric Features with Price',y=1,size=16)
sns.heatmap(correlation,square = True,  vmax=0.8)

在这里插入图片描述

  • 包裹式
    包裹式从初始特征集合中不断的选择特征子集,训练学习器,根据学习器的性能来对子集进行评价,直到选择出最佳的子集。
    包裹式特征选择直接针对给定学习器进行优化。
    优点:从最终学习器的性能来看,包裹式比过滤式更好;
    缺点:由于特征选择过程中需要多次训练学习器,因此包裹式特征选择的计算开销通常比过滤式特征选择要大得多。
# 此处使用CPU计算特征
from mlxtend.feature_selection import SequentialFeatureSelector as SFS
from sklearn.linear_model import LinearRegression

sfs = SFS(LinearRegression(),
           k_features=10,
           forward=True,
           floating=False,
           scoring = 'r2',
           cv = 0)
x = data.drop(['price'], axis=1)
x = x.fillna(0)
y = data['price']
y = y.fillna(0)
sfs.fit(x, y)
sfs.k_feature_names_ 

# 可视化
from mlxtend.plotting import plot_sequential_feature_selection as plot_sfs
import matplotlib.pyplot as plt
fig1 = plot_sfs(sfs.get_metric_dict(), kind='std_dev')
plt.grid()
plt.show()

在这里插入图片描述

  • 包裹式特征分类器SFS,中间遇到的一些问题:
  1. 有无穷值,空字符串,NAN缺失数值作为输入
    解决方法:在读取数据集时添加参数,pd.read_csv(’…’, sep=’ ',na_values=‘NULL’),na_values表示把空字符看做NAN对待,这样就可以用fillna来处理,先用正则将空格匹配出来,然后全部替换为NULL,再在用pandas读取csv时候指定 read_csv(na_values=‘NULL’)就是将NULL认为是nan处理,接下来就可以用dropna()或者fillna()来处理了;不仅如此,对y也进行fillna(0)处理缺失值。
  2. could not convert string to float:
    这里应该是数据集中某个成员为str类型,通过下面的方法遍历输出有异常值的成员,发现是之前处理的‘city’信息造成异常。
for item in x.columns:
    try:
        x[item] = x[item].astype(float)
    except:
        print(item)

3. 特征工程总结

特征工程的主要目的还是在于将数据转换为能更好地表示潜在问题的特征,从而提高机器学习的性能。比如,异常值处理是为了去除噪声,填补缺失值可以加入先验知识等。

特征构造也属于特征工程的一部分,其目的是为了增强数据的表达。

有些比赛的特征是匿名特征,这导致我们并不清楚特征相互直接的关联性,这时我们就只有单纯基于特征进行处理,比如装箱,groupby,agg 等这样一些操作进行一些特征统计,此外还可以对特征进行进一步的 log,exp 等变换,或者对多个特征进行四则运算(如上面我们算出的使用时长),多项式组合等然后进行筛选。由于特性的匿名性其实限制了很多对于特征的处理,当然有些时候用 NN 去提取一些特征也会达到意想不到的良好效果。

对于知道特征含义(非匿名)的特征工程,特别是在工业类型比赛中,会基于信号处理,频域提取,丰度,偏度等构建更为有实际意义的特征,这就是结合背景的特征构建,在推荐系统中也是这样的,各种类型点击率统计,各时段统计,加用户属性的统计等等,这样一种特征构建往往要深入分析背后的业务逻辑或者说物理原理,从而才能更好的找到 magic。

当然特征工程其实是和模型结合在一起的,这就是为什么要为 LR NN 做分桶和特征归一化的原因,而对于特征的处理效果和特征重要性等往往要通过模型来验证。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值