计算净重新分类指数和整体鉴别指数详解及 Python

114 篇文章 ¥59.90 ¥99.00
本文详细介绍了医学统计中的净重新分类指数(NRI)和整体鉴别指数(IDI)这两个评估预测模型的指标。通过Python代码示例,展示了如何计算NRI和IDI,以评估新模型相对于旧模型的预测准确性改进。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

计算净重新分类指数和整体鉴别指数详解及 Python

净重新分类指数(Net Reclassification Index,NRI)和整体鉴别指数(Integrated Discrimination Improvement,IDI)是在医学统计学和预测模型评估中常用的指标。本文将详细介绍这两个指标,并提供使用 Python 计算它们的示例代码。

一、净重新分类指数(NRI)

净重新分类指数用于评估新的预测模型相对于旧模型在预测准确性上的改进。它衡量了新模型在正确重新分类的患者中的改进程度,以及错误重新分类的患者中的改进程度。

计算净重新分类指数的步骤如下:

  1. 确定旧模型和新模型的分类阈值。
  2. 将患者按照其真实结果和预测结果进行分类,得到四个分类组合:真阳性(True Positive,TP)、真阴性(True Negative,TN)、假阳性(False Positive,FP)和假阴性(False Negative,FN)。
  3. 根据旧模型和新模型的分类阈值,将患者重新分类为“重新分类为阳性”和“重新分类为阴性”两个组。
  4. 计算新模型相对于旧模型在两个组中的改进情况,并得到两个改进比例。
  5. 计算净重新分类指数(NRI)ÿ
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值