为什么会重复
高并发访问
雪花正常1毫秒生成多少
雪花算法(Snowflake)理论上每秒可以生成最多 409.6 万个唯一ID(即 4,096,000 ID/s),具体取决于其时间戳和序列号的分配方式。以下是详细分析:
雪花算法的ID结构
典型的雪花算法ID由三部分组成(以64位为例):
-
时间戳(41位):毫秒级精度,存储当前时间与自定义起始时间的差值。
-
工作节点ID(10位):支持最多
1024
个分布式节点。 -
序列号(12位):每毫秒内自增的序列,支持每毫秒生成
4096
(即2^12
)个唯一ID。
每秒生成ID的极限计算
-
每毫秒生成上限:
序列号12位 → 每毫秒最多生成4096
个ID。 -
每秒生成上限:
4096 ID/ms × 1000 ms = 4,096,000 ID/s
(即约 409.6万ID/秒)。
优化代码
增加重试机制,通过缓存30s内数据
public class Utils {
private static final Logger logger = LoggerFactory.getLogger(Utils.class);
//循环次数
private static final int TIMES = 10;
//锁定时间 秒
private static final long LOCK_TIMEOUT = 30000L;
//等待时间 毫秒
private static final long WAIT_TIMEOUT = 100L;
/**
* 生成UUID,避免大并发时,UUID重复
* 生成唯一键
*
* @param prefix
* @return
*/
public static Long genUUID(RedisPool pool, String prefix) {
Long id = null;
for(int i = 0; i < TIMES; i++){
String key = null;
try{
id = UUIDUtil.generate();
key = prefix+id;
int expire = (int)(LOCK_TIMEOUT / 1000);
String val = ""+System.currentTimeMillis();
if(!RedisUtil.setnx(pool, key, expire, val)){
throw new CommonException("UUID重复");
}
Thread.sleep(WAIT_TIMEOUT);
break;
}catch (Exception ex){
logger.error(" UUID生成失败 存在重复 :"+key + " 次数: "+(i+1));
id = null;
try{
//异常等待
long timeOut = WAIT_TIMEOUT * (i+1);
Thread.sleep(timeOut);
}catch(Exception ee){
ee.printStackTrace();
}
}
}
if(id == null){
logger.error(" UUID生成失败 无法生成,前缀 :"+prefix);
throw new CommonException("UUID无法生成");
}
return id;
}
}
雪花算法工具
public class SnowFlake {
public static Long mac;
public static Long ip;
/**
* 开始时间截 (2015-01-01)
*/
private final static long twepoch = 1420041600000L;
/**
* 机器id所占的位数
*/
private final static long workerIdBits = 5L;
/**
* 数据标识id所占的位数
*/
private final static long datacenterIdBits = 5L;
/**
* 序列在id中占的位数
*/
private final static long sequenceBits = 12L;
/**
* 机器ID向左移12位
*/
private final static long workerIdShift = sequenceBits;
/**
* 数据标识id向左移17位(12+5)
*/
private final static long datacenterIdShift = sequenceBits + workerIdBits;
/**
* 时间截向左移22位(5+5+12)
*/
private final static long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits;
/**
* 生成序列的掩码,这里为4095 (0b111111111111=0xfff=4095)
*/
private final static long sequenceMask = -1L ^ (-1L << sequenceBits);
/**
* 毫秒内序列(0~4095)
*/
private static long sequence = 0L;
/**
* 上次生成ID的时间截
*/
private static long lastTimestamp = -1L;
/**
* 获得下一个ID (该方法是线程安全的)
*
* @return SnowflakeId
*/
public static synchronized long nextId() {
long timestamp = timeGen();
// 如果当前时间小于上一次ID生成的时间戳,说明系统时钟回退过这个时候应当抛出异常
if (timestamp < lastTimestamp) {
throw new RuntimeException(String.format(
"前时间小于上一次ID生成的时间戳 %d milliseconds", lastTimestamp - timestamp));
}
// 如果是同一时间生成的,则进行毫秒内序列
if (lastTimestamp == timestamp) {
sequence = (sequence + 1) & sequenceMask;
// 毫秒内序列溢出
if (sequence == 0) {
// 阻塞到下一个毫秒,获得新的时间戳
timestamp = tilNextMillis(lastTimestamp);
}
}
// 时间戳改变,毫秒内序列重置
else {
sequence = 0L;
}
// 上次生成ID的时间截
lastTimestamp = timestamp;
if (mac == null) {
mac = getMac();
}
if (ip == null) {
ip = getIp();
}
// 移位并通过或运算拼到一起组成64位的ID
return ((timestamp - twepoch) << timestampLeftShift) //
| (mac << datacenterIdShift) //
| (ip << workerIdShift) //
| sequence;
}
/**
* 阻塞到下一个毫秒,直到获得新的时间戳
*
* @param lastTimestamp 上次生成ID的时间截
* @return 当前时间戳
*/
protected static long tilNextMillis(long lastTimestamp) {
long timestamp = timeGen();
while (timestamp <= lastTimestamp) {
timestamp = timeGen();
}
return timestamp;
}
/**
* 返回以毫秒为单位的当前时间
*
* @return 当前时间(毫秒)
*/
protected static long timeGen() {
return System.currentTimeMillis();
}
public static Long getMac() {
InetAddress adress = null;
try {
adress = InetAddress.getLocalHost();
System.out.println("getLocalHost=" + adress);
NetworkInterface net = NetworkInterface.getByInetAddress(adress);
byte[] macBytes = net.getHardwareAddress();
int sum = 0;
for (int b : macBytes) {
sum += Math.abs(b);
}
System.out.println("getLocalHost.sum=" + sum);
return (long) (sum % 32);
} catch (Exception e) {
e.printStackTrace();
return RandomUtils.nextLong(0, 31);
}
}
public static Long getIp() {
try {
String hostAddress = Inet4Address.getLocalHost().getHostAddress();
System.out.println("hostAddress=" + hostAddress);
int[] ints = StringUtils.toCodePoints(hostAddress);
int sums = 0;
for (int b : ints) {
sums += b;
}
return (long) (sums % 32);
} catch (UnknownHostException e) {
e.printStackTrace();
// 如果获取失败,则使用随机数备用
return RandomUtils.nextLong(0, 31);
}
}
}