雪花算法ID重复一种优化方案

为什么会重复

高并发访问

雪花正常1毫秒生成多少

雪花算法(Snowflake)理论上每秒可以生成最多 409.6 万个唯一ID(即 4,096,000 ID/s),具体取决于其时间戳和序列号的分配方式。以下是详细分析:


雪花算法的ID结构

典型的雪花算法ID由三部分组成(以64位为例):

  1. 时间戳(41位):毫秒级精度,存储当前时间与自定义起始时间的差值。

  2. 工作节点ID(10位):支持最多 1024 个分布式节点。

  3. 序列号(12位):每毫秒内自增的序列,支持每毫秒生成 4096(即 2^12)个唯一ID。


每秒生成ID的极限计算

  1. 每毫秒生成上限
    序列号12位 → 每毫秒最多生成 4096 个ID。

  2. 每秒生成上限
    4096 ID/ms × 1000 ms = 4,096,000 ID/s
    (即约 409.6万ID/秒)。

优化代码

增加重试机制,通过缓存30s内数据

public class Utils {
    private static final Logger logger = LoggerFactory.getLogger(Utils.class);

    //循环次数
    private static final int TIMES = 10;
    //锁定时间 秒
    private static final long LOCK_TIMEOUT = 30000L;
    //等待时间 毫秒
    private static final long WAIT_TIMEOUT = 100L;

    /**
     * 生成UUID,避免大并发时,UUID重复
     * 生成唯一键
     *
     * @param prefix
     * @return
     */
    public static Long genUUID(RedisPool pool, String prefix) {
        Long id = null;
        for(int i = 0; i < TIMES; i++){
            String key = null;
            try{
                id = UUIDUtil.generate();
                key = prefix+id;
                int expire = (int)(LOCK_TIMEOUT / 1000);
                String val = ""+System.currentTimeMillis();
                if(!RedisUtil.setnx(pool, key, expire, val)){
                    throw new CommonException("UUID重复");
                }
                Thread.sleep(WAIT_TIMEOUT);
                break;
            }catch (Exception ex){
                logger.error(" UUID生成失败 存在重复 :"+key + " 次数: "+(i+1));
                id = null;
                try{
                    //异常等待
                    long timeOut = WAIT_TIMEOUT * (i+1);
                    Thread.sleep(timeOut);
                }catch(Exception ee){
                    ee.printStackTrace();
                }
            }
        }
        if(id == null){
            logger.error(" UUID生成失败 无法生成,前缀 :"+prefix);
            throw new CommonException("UUID无法生成");
        }
        return id;
    }
}

雪花算法工具

public class SnowFlake {

    public static Long mac;
    public static Long ip;


    /**
     * 开始时间截 (2015-01-01)
     */
    private final static long twepoch = 1420041600000L;

    /**
     * 机器id所占的位数
     */
    private final static long workerIdBits = 5L;

    /**
     * 数据标识id所占的位数
     */
    private final static long datacenterIdBits = 5L;

    /**
     * 序列在id中占的位数
     */
    private final static long sequenceBits = 12L;

    /**
     * 机器ID向左移12位
     */
    private final static long workerIdShift = sequenceBits;

    /**
     * 数据标识id向左移17位(12+5)
     */
    private final static long datacenterIdShift = sequenceBits + workerIdBits;

    /**
     * 时间截向左移22位(5+5+12)
     */
    private final static long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits;

    /**
     * 生成序列的掩码,这里为4095 (0b111111111111=0xfff=4095)
     */
    private final static long sequenceMask = -1L ^ (-1L << sequenceBits);

    /**
     * 毫秒内序列(0~4095)
     */
    private static long sequence = 0L;

    /**
     * 上次生成ID的时间截
     */
    private static long lastTimestamp = -1L;

    /**
     * 获得下一个ID (该方法是线程安全的)
     *
     * @return SnowflakeId
     */
    public static synchronized long nextId() {
        long timestamp = timeGen();

        // 如果当前时间小于上一次ID生成的时间戳,说明系统时钟回退过这个时候应当抛出异常
        if (timestamp < lastTimestamp) {
            throw new RuntimeException(String.format(
                    "前时间小于上一次ID生成的时间戳 %d milliseconds", lastTimestamp - timestamp));
        }
        // 如果是同一时间生成的,则进行毫秒内序列
        if (lastTimestamp == timestamp) {
            sequence = (sequence + 1) & sequenceMask;
            // 毫秒内序列溢出
            if (sequence == 0) {
                // 阻塞到下一个毫秒,获得新的时间戳
                timestamp = tilNextMillis(lastTimestamp);
            }
        }
        // 时间戳改变,毫秒内序列重置
        else {
            sequence = 0L;
        }

        // 上次生成ID的时间截
        lastTimestamp = timestamp;

        if (mac == null) {
            mac = getMac();
        }
        if (ip == null) {
            ip = getIp();
        }
        // 移位并通过或运算拼到一起组成64位的ID
        return ((timestamp - twepoch) << timestampLeftShift) //
                | (mac << datacenterIdShift) //
                | (ip << workerIdShift) //
                | sequence;
    }

    /**
     * 阻塞到下一个毫秒,直到获得新的时间戳
     *
     * @param lastTimestamp 上次生成ID的时间截
     * @return 当前时间戳
     */
    protected static long tilNextMillis(long lastTimestamp) {
        long timestamp = timeGen();
        while (timestamp <= lastTimestamp) {
            timestamp = timeGen();
        }
        return timestamp;
    }

    /**
     * 返回以毫秒为单位的当前时间
     *
     * @return 当前时间(毫秒)
     */
    protected static long timeGen() {
        return System.currentTimeMillis();
    }


    public static Long getMac() {
        InetAddress adress = null;
        try {
            adress = InetAddress.getLocalHost();
            System.out.println("getLocalHost=" + adress);
            NetworkInterface net = NetworkInterface.getByInetAddress(adress);
            byte[] macBytes = net.getHardwareAddress();
            int sum = 0;
            for (int b : macBytes) {
                sum += Math.abs(b);
            }
            System.out.println("getLocalHost.sum=" + sum);
            return (long) (sum % 32);
        } catch (Exception e) {
            e.printStackTrace();
            return RandomUtils.nextLong(0, 31);
        }
    }

    public static Long getIp() {
        try {
            String hostAddress = Inet4Address.getLocalHost().getHostAddress();
            System.out.println("hostAddress=" + hostAddress);
            int[] ints = StringUtils.toCodePoints(hostAddress);
            int sums = 0;
            for (int b : ints) {
                sums += b;
            }
            return (long) (sums % 32);
        } catch (UnknownHostException e) {
            e.printStackTrace();
            // 如果获取失败,则使用随机数备用
            return RandomUtils.nextLong(0, 31);
        }

    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值