描述
Michael喜欢滑雪百这并不奇怪, 因为滑雪的确很刺激。可是为了获得速度,滑的区域必须向下倾斜,而且当你滑到坡底,你不得不再次走上坡或者等待升降机来载你。Michael想知道载一个区域中最长的滑坡。区域由一个二维数组给出。数组的每个数字代表点的高度。下面是一个例子
一个人可以从某个点滑向上下左右相邻四个点之一,当且仅当高度减小。在上面的例子中,一条可滑行的滑坡为24-17-16-1。当然25-24-23-...-3-2-1更长。事实上,这是最长的一条。
输入
输入的第一行表示区域的行数R和列数C(1 <= R,C <= 100)。下面是R行,每行有C个整数,代表高度h,0<=h<=10000。
输出
输出最长区域的长度。
样例输入
样例输出
1 2 3 4 5 16 17 18 19 6 15 24 25 20 7 14 23 22 21 8 13 12 11 10 9
一个人可以从某个点滑向上下左右相邻四个点之一,当且仅当高度减小。在上面的例子中,一条可滑行的滑坡为24-17-16-1。当然25-24-23-...-3-2-1更长。事实上,这是最长的一条。
5 5 1 2 3 4 5 16 17 18 19 6 15 24 25 20 7 14 23 22 21 8 13 12 11 10 9
25
dx[4]={1,0,-1,0};dy[4]={0,1,0,-1};分别表示向上下左右四个方向,用a[i][j]存储每个点的高度,len[i][j]存储从a[i][j]出发的最长路径,len的初始值是0,则方程是max(len[i+1][j],len[i][j+1],len[i-1][j],len[i][j-1])+1;
#include<iostream> #include<string.h> #include<algorithm> using namespace std; int dx[4]={1,0,-1,0}; int dy[4]={0,1,0,-1}; int a[110][110],len[110][110]; int x,y; bool ok(int i,int j) { return (i>=1 && i<=x && j>=1 &&j<=y);//判断是否超出边界 } int dp(int i,int j) { int k; if(len[i][j]>0) return len[i][j]; //如果已经计算出 则直接返回 for(k=0;k<4;k++) { if(ok(i+dx[k],j+dy[k])) if( a[i+dx[k]][j+dy[k]]<a[i][j] ) { if(len[i][j]< dp(i+dx[k],j+dy[k])+1) len[i][j]=dp(i+dx[k],j+dy[k])+1; } } return len[i][j]; } int main() { int i,j; int max; while(cin>>x>>y) { max=0; memset(a,0,sizeof(a)); memset(len,0,sizeof(len)); for(i=1;i<=x;i++) for(j=1;j<=y;j++) cin>>a[i][j]; for(i=1;i<=x;i++) for(j=1;j<=y;j++) { len[i][j]=dp(i,j); if(len[i][j]>max) max=len[i][j]; } cout<<max+1<<endl; } return 0; }