关于一笔画问题的一些思考(欧拉路Fleury算法、逐步插入回路法、以及另一种可能的解法)

前言

这是一个经典的图论问题了

最近复习离散的时候又恰好看到了,发现自己以前的解法似乎有点bug

然后开始出反例卡自己,结果发现卡不掉?

然后再好好想了想,发现这个看起来有问题的做法可能确实没问题。

注意:欧拉路、欧拉回路、欧拉图、半欧拉图四个概念的区别

Fleury算法

这是离散数学书上的经典求解欧拉路的算法之一

非常好理解,只不过如何快速判断正在删边的图的桥实现起来比较麻烦,如果没有好的数据结构的支持,时间复杂度将会多乘一个(n+m),所以正常情况下我们不用Fleury算法来求解欧拉路

逐步插入回路法

这个方法离散数学书上并没有细讲,而仅仅只用一句话带过了

我们可以先来看看定理15.1(欧拉回路的判定定理)的充分性证明

充分性:G是无向连通图且没有奇度顶点=>G中存在欧拉回路(G是欧拉图)

大致意思就是

(1)G中必定存在圈

书中用可以证明四个字带过了

这个可以用极大路径法证明

因为δ(G)≥2,那么找一条图中的极大路径,路径的端点一定存在一条边连向路径中的点(否则路径就可以继续延长,与极大路径矛盾),这样就会构成一个圈。

(2)删掉这个圈后,剩下的连通分支都是欧拉图(由归纳法假设可得)

(3)以这个大圈上的一点为出发点,走到与删掉后的连通分支上的点后,先把子欧拉回路走完,然后再继续向前走。

证明过程如此,那么如何将其转换为算法呢?

可以利用归纳法的思想,对图G进行分治,先任意找圈,然后删圈,判连通性,在各个连通分支递归,答案返回后再一起整合……反正写起来巨麻烦,而且没必要

另一种可能的解法

为什么说是可能呢,因为我也感觉自己不能很严谨的证明这个做法的正确性

先上代码:

这里省略了对图进行(半)欧拉图判定的过程以及选起始点的过程

只保留了计算的主体部分

可以说是非常诡异,初看时觉得有点道理,细想之后发现完全不对劲,但是它却AC了

于是我开始举反例

8

0 1 1 1 1 0 1 1

1 0 1 0 0 0 0 0

1 1 0 0 0 0 0 0

1 0 0 0 1 1 0 0

1 0 0 1 0 1 0 0

0 0 0 1 1 0 0 0

1 0 0 0 0 0 0 1

1 0 0 0 0 0 1 0

可以发现程序的dfs过程确实时错误的,但是最后输出的结果确实对的

关键就是在于保存答案的位置和输出答案的顺序。

dfs输出的位置是入栈的位置,而保存答案的位置是出栈的位置

Fluery算法告诉我们,我们在做一笔画时出错的原因是,在不必要的时候先走了桥,导致没办法走回来

也就是说,我们应该最后走桥

虽然这个做法中我们并不能保证我们最后走的是桥

但是我们知道

先走桥的肯定会先出栈(因为会走不通,导致退栈回溯)

所以过桥的答案一定会被先统计到

而且最后又是倒序输出,这样就间接地保证了过桥之后的答案最后输出

也就间接地保证了这个做法的正确性。

这个做法是OI中比较普遍的欧拉路求解算法,然而我的这个证明是很不严谨的,希望有识之士可以补充更加严谨的证明。

完结撒花~~~~( •̀ ω •́ )y

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值