题目描述:
n
,
m
,
q
≤
1
0
5
n,m,q\le10^5
n,m,q≤105 时间限制3s,空间限制256M
题目分析:
(罪恶王冠加深了题目的自闭氛围。。。 )
操作3好说,就一个主席树预处理,把矩形拆成两条竖直的线差分,单点查询。(也可以拆成四个点差分)。只是注意离散化的时候要将矩形的x0-1也要加入离散化数组中(lower_bound时要用到),还有主席树的区间修改的空间复杂度一次可以达到 4 × l o g 4\times log 4×log的(因此调了2h不知道为什么出负数。。windows下运行也不报RE而是报WA。。。)。
操作1,2的话如果不卡空间(比如说开1个G),可以用带修改的主席树,空间复杂度 n l o g 2 n nlog^2n nlog2n
但是只有256M就必须得KD树了(已经完全忘了怎么打。。
查询矩形内的点数是基本操作吧。
操作3其实也可以另建一棵KD树,把矩形拆成四个点差分,对每个点计算左下角部分的和,只不过好像会T的样子。。(吗?可以自己尝试一下
Code:
#include<bits/stdc++.h>
#define maxn 100005
using namespace std;
char cb[1<<18],*cs,*ct;
#define getc() (cs==ct&&(ct=(cs=cb)+fread(cb,1,1<<18,stdin),cs==ct)?0:*cs++)
inline void read(int &a){
char c;bool flg=0;while(!isdigit(c=getc())) c=='-'&&(flg=1);
for(a=c-'0';isdigit(c=getc());a=a*10+c-'0'); flg&&(a=-a);
}
int n,m,Q,A,ans,X[maxn][2],Y[maxn][2];
namespace op3{
int b[maxn*6],N,cnt;
struct node{
int x,l,r,t;
bool operator < (const node &p)const{return x==p.x?t<p.t:x<p.x;}
}q[maxn<<1];
#define maxp maxn*120//big enough! insert[l,r] use 4*log(not full),log(6*n)=19(full)
int rt[maxn*6],lc[maxp],rc[maxp],s[maxp],sz;
inline int turn(int x){return lower_bound(b+1,b+1+N,x)-b;}
void insert(int &i,int l,int r,int x,int y,int t){
s[++sz]=s[i],lc[sz]=lc[i],rc[sz]=rc[i];
i=sz;
if(x<=l&&r<=y) {s[i]+=t;return;}
int mid=(l+r)>>1;
if(x<=mid) insert(lc[i],l,mid,x,y,t);
if(y>mid) insert(rc[i],mid+1,r,x,y,t);
}
int query(int i,int l,int r,int x){
if(!i) return 0;
if(l==r) return s[i];
int mid=(l+r)>>1;
if(x<=mid) return s[i]+query(lc[i],l,mid,x);
else return s[i]+query(rc[i],mid+1,r,x);
}
void prepare(){
for(int i=1;i<=n;i++) b[++N]=X[i][0],b[++N]=X[i][0]-1,b[++N]=Y[i][0],b[++N]=Y[i][0]-1,b[++N]=X[i][1],b[++N]=Y[i][1];
sort(b+1,b+1+N);
N=unique(b+1,b+1+N)-b-1;
for(int i=1;i<=n;i++){
int x0=turn(X[i][0]),y0=turn(Y[i][0]),x1=turn(X[i][1]),y1=turn(Y[i][1]);
q[++cnt]=(node){x0,y0,y1,1},q[++cnt]=(node){x1+1,y0,y1,-1};
}
sort(q+1,q+1+cnt);
for(int i=1,j=1;i<=N;i++){
rt[i]=rt[i-1];
while(j<=cnt&&q[j].x<=i) {insert(rt[i],1,N,q[j].l,q[j].r,q[j].t),j++;}
}
}
int solve(int x,int y){return (x=turn(x))<=N&&(y=turn(y))<=N?query(rt[x],1,N,y):0;}
}
int rt,id[maxn<<1],tot,D,*mtp;
struct node{
int d[2],mn[2],mx[2],s,ch[2],nd;
void mt(node *t){
s=t[ch[0]].s+t[ch[1]].s+1;
for(int i=0;i<2;i++){
mn[i]=mx[i]=d[i];
for(int j=0;j<2;j++) if(ch[j]) mn[i]=min(mn[i],t[ch[j]].mn[i]),mx[i]=max(mx[i],t[ch[j]].mx[i]);
}
}
}t[maxn<<1];
bool cmp(int i,int j){return t[i].d[D]<t[j].d[D];}
void build(int &i,int l,int r,int nd){
if(l>r) {i=0;return;}
int o=(l+r)>>1;D=nd,nth_element(id+l,id+o,id+r+1,cmp),i=id[o];//cmp!,id!
build(t[i].ch[0],l,o-1,nd^1),build(t[i].ch[1],o+1,r,nd^1);
t[i].mt(t),t[i].nd=nd;
}
void pia(int &i){
if(!i) return;
id[++id[0]]=i,pia(t[i].ch[0]),pia(t[i].ch[1]);
}
void ins(int &i,int x,int nd){
if(!i) {t[i=x].mt(t),t[i].nd=nd;return;}
D=nd,ins(t[i].ch[cmp(i,x)],x,nd^1),t[i].mt(t);
if(t[i].s*0.75<=max(t[t[i].ch[0]].s,t[t[i].ch[1]].s)) mtp=&i;
}
int qry(int i,int x[2],int y[2]){
if(!i||x[1]<t[i].mn[0]||x[0]>t[i].mx[0]||y[1]<t[i].mn[1]||y[0]>t[i].mx[1]) return 0;
if(x[0]<=t[i].mn[0]&&t[i].mx[0]<=x[1]&&y[0]<=t[i].mn[1]&&t[i].mx[1]<=y[1]) return t[i].s;
return qry(t[i].ch[0],x,y)+qry(t[i].ch[1],x,y)+(x[0]<=t[i].d[0]&&t[i].d[0]<=x[1]&&y[0]<=t[i].d[1]&&t[i].d[1]<=y[1]);
}
int main()
{
freopen("datastructure.in","r",stdin);
freopen("datastructure.out","w",stdout);
read(n),read(m);
for(int i=1;i<=n;i++) read(X[i][0]),read(Y[i][0]),read(X[i][1]),read(Y[i][1]);
op3::prepare();
for(int i=1;i<=m;i++) read(t[++tot].d[0]),read(t[tot].d[1]),id[++id[0]]=tot;
build(rt,1,id[0],0);
read(Q),read(A);
int op,x,y;
while(Q--){
read(op);
if(op==1){
read(x),read(y),t[++tot].d[0]=x+ans*A,t[tot].d[1]=y+ans*A;
mtp=0,ins(rt,tot,0);
if(mtp) id[0]=0,pia(*mtp),build(*mtp,1,id[0],t[*mtp].nd);
}
else if(op==2) read(x),x+=ans*A,printf("%d\n",ans=qry(rt,X[x],Y[x]));
else read(x),read(y),printf("%d\n",ans=op3::solve(x+ans*A,y+ans*A));
}
}