1759:最长上升子序列

1759:最长上升子序列


总时间限制: 
2000ms 
内存限制: 
65536kB
描述
一个数的序列 bi,当 b1 <  b2 < ... <  bS的时候,我们称这个序列是上升的。对于给定的一个序列( a1a2, ...,  aN),我们可以得到一些上升的子序列( ai1ai2, ...,  aiK),这里1 <=  i1 <  i2 < ... <  iK <= N。比如,对于序列(1, 7, 3, 5, 9, 4, 8),有它的一些上升子序列,如(1, 7), (3, 4, 8)等等。这些子序列中最长的长度是4,比如子序列(1, 3, 5, 8).

你的任务,就是对于给定的序列,求出最长上升子序列的长度。
输入
输入的第一行是序列的长度N (1 <= N <= 1000)。第二行给出序列中的N个整数,这些整数的取值范围都在0到10000。
输出
最长上升子序列的长度。
样例输入
7
1 7 3 5 9 4 8
样例输出
4

这是OpenJudge上的一道题目,戳我查看 ——————————分析———————————— 这是一道非常基础的dp题,采用了dp最常见的“人人为我”思想,接下来让我们看一看。 二维数组的方法就不介绍了,接下来我们来看一看一位数组(滚动数组)。 我们用a数组来表示原数组,b数组来表示从n开始到i字符的最长上升子序列。因此公式为:

if(a[j]>a[i]&&b[j]>b[i]) b[i]=b[j];

或者

 b[i]=max(b[i],b[j]+1);


——————————代码——————————

#include<cstdio>
int a[1005],b[1005],n,i,j,c[1005]={0};//c数组是用来输出的
int main()
{
	int max,start;
	scanf("%d",&n);
	for(i=1;i<=n;i++)scanf("%d",&a[i]);
	b[n]=1;
	max=1;
	start=n;
	c[n]=-1;
	for(i=n-1;i>=1;i--)
	{
	 	for(j=i+1;j<=n;j++)
			if(a[j]>a[i]&&b[j]>b[i])
			{b[i]=b[j];c[i]=j;}
		b[i]++;	
		if(b[i]==1)c[i]=-1;
		if(b[i]>=max){max=b[i];start=i;}
	}
	printf("%d\n",max);
	/*do
	{
		if(c[start]==-1)
			printf("%d",a[start]);
		else
			printf("%d ",a[start]);
		start=c[start];
	}这是输出部分	
	while(start!=-1);*/
	return 0;
}
觉得有用就顶起来

戳我查看跟多博客


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值