1758:二叉树
总时间限制: 1000ms 内存限制: 65536kB
描述
如上图所示,由正整数1, 2, 3, …组成了一棵无限大的二叉树。从某一个结点到根结点(编号是1的结点)都有一条唯一的路径,比如从10到根结点的路径是(10, 5, 2, 1),从4到根结点的路径是(4, 2, 1),从根结点1到根结点的路径上只包含一个结点1,因此路径就是(1)。对于两个结点x和y,假设他们到根结点的路径分别是(x1, x2, … ,1)和(y1, y2, … ,1)(这里显然有x = x1,y = y1),那么必然存在两个正整数i和j,使得从xi 和 yj开始,有xi = yj , xi + 1 = yj + 1, xi + 2 = yj + 2,… 现在的问题就是,给定x和y,要求xi(也就是yj)。
输入
输入只有一行,包括两个正整数x和y,这两个正整数都不大于1000。
输出
输出只有一个正整数xi。
样例输入
10 4
样例输出
2
———————分析———————
这是二叉树的一道题目,在OpenJudge上,戳我查看
题目的意思就是在一棵二叉树上找一个点,然后找出它们的最大交点。
思想很简单:–>
如果一个数k是偶数,那么它的父节点就是k/2,否则就是(k-1)/2
OK分析完毕,自己看代码
——————代码实现——————
#include<cstdio>
int a[305],b[305],l,r;
void z(int i)
{
a[++l]=i;
if(i==1) return;
if(i%2==0) z(i/2);
else z((i-1)/2);
}
void t(int i)
{
b[++r]=i;
if(i==1) return;
if(i%2==0) t(i/2);
else t((i-1)/2);
}
int main()
{
int n,m;
scanf("%d%d",&n,&m);
z(n);
t(m);
for(int i=1;i<=l;i++)
for(int j=1;j<=r;j++)
if(a[i]==b[j]) {printf("%d",a[i]);return 0;}
}