NOIP2017普及组复赛 T3
棋盘
时间限制: 2 Sec 内存限制: 128 MB
题目描述
有一个m × m的棋盘,棋盘上每一个格子可能是红色、黄色或没有任何颜色的。你现在
要从棋盘的最左上角走到棋盘的最右下角。
任何一个时刻,你所站在的位置必须是有颜色的(不能是无色的),你只能向上、下、
左、右四个方向前进。当你从一个格子走向另一个格子时,如果两个格子的颜色相同,那你
不需要花费金币;如果不同,则你需要花费1 个金币。
另外,你可以花费2 个金币施展魔法让下一个无色格子暂时变为你指定的颜色。但这个
魔法不能连续使用,而且这个魔法的持续时间很短,也就是说,如果你使用了这个魔法,走
到了这个暂时有颜色的格子上,你就不能继续使用魔法;只有当你离开这个位置,走到一个
本来就有颜色的格子上的时候,你才能继续使用这个魔法,而当你离开了这个位置(施展魔
法使得变为有颜色的格子)时,这个格子恢复为无色。
现在你要从棋盘的最左上角,走到棋盘的最右下角,求花费的最少金币是多少?
输入
第一行包含两个正整数m,n,以一个空格分开,分别代表棋盘的大小,棋盘上
有颜色的格子的数量。
接下来的 n 行,每行三个正整数x,y,c,分别表示坐标为(x,y)的格子有颜色c。
其中c=1 代表黄色,c=0 代表红色。相邻两个数之间用一个空格隔开。棋盘左上角的坐标
为(1, 1),右下角的坐标为(m, m)。
棋盘上其余的格子都是无色。保证棋盘的左上角,也就是(1,1)一定是有颜色的。
输出
输出一行,一个整数,表示花费的金币的最小值,如果无法到达,输出-1。
样例输入
5 7
1 1 0
1 2 0
2 2 1
3 3 1
3 4 0
4 4 1
5 5 0
样例输出
8
附
分析
这道题是一道搜索题,可以用暴力搜索做出来。
既然是上下左右四个方向(↑↓←→),那么就要用到我们的d1和d2数组,用来表示方向(道理大家都懂,就不细讲了)。
然后为了筛选出最优解,我们可以在来一个d数组来储存到这个方块的最优解,这样一直筛到终点就是最优解。
那么问题来了,颜色块怎么判断?
不妨先把所有的情况枚举一遍:
1.同颜色,可以直接走;
2.不同颜色,可以直接走;
3.无色,有魔法,用魔法;
4.两个都是无色,结束;
5.从魔法块移动到有色块;
大概就这五种:
dx=x+d1[i];
dy=y+d2[i];
if(!a[dx][dy]&&!a[x][y]) continue;
else if(a[dx][dy]==a[x][y]&&a[dx][dy]&&a[x][y]) dfs(dx,dy,ans,0);
else if((a[dx][dy]!=a[x][y])&&a[dx][dy]&&a[x][y]) dfs(dx,dy,ans+1,0);
else if(a[x][y]&&!a[dx][dy]&&!col) dfs(dx,dy,ans+2,a[x][y]);
else if(!a[x][y]&&a[dx][dy]&&col)
{
if(col!=a[dx][dy]) dfs(dx,dy,ans+1,0);
else dfs(dx,dy,ans,0);
}
核心部分已经说完了,哦,顺带一提:
d数组不要忘记赋极大值
d数组不要忘记赋极大值
d数组不要忘记赋极大值
代码
#include<cstdio>
#include<algorithm>
#include<climits>
using namespace std;
const int MN=INT_MAX;
int d[105][105],a[105][105],d1[4]={1,0,-1,0},d2[4]={0,1,0,-1},m,n,X,Y,T;
void dfs(int x,int y,int ans,int col)
{
int dx,dy;
if(x<1||y<1||x>m||y>m||d[x][y]<=ans) return;//判断边界
d[x][y]=min(d[x][y],ans);//更新d数组的值
for(int i=0;i<4;i++)
{
dx=x+d1[i];
dy=y+d2[i];
if(!a[dx][dy]&&!a[x][y]) continue;//两个都是无色的
else if(a[dx][dy]==a[x][y]&&a[dx][dy]&&a[x][y]) dfs(dx,dy,ans,0);//移动到同颜色方块
else if((a[dx][dy]!=a[x][y])&&a[dx][dy]&&a[x][y]) dfs(dx,dy,ans+1,0);//移动到不同颜色方块
else if(a[x][y]&&!a[dx][dy]&&!col) dfs(dx,dy,ans+2,a[x][y]);//施展魔法
else if(!a[x][y]&&a[dx][dy]&&col)//从魔法块走到颜色块
{
if(col!=a[dx][dy]) dfs(dx,dy,ans+1,0);
else dfs(dx,dy,ans,0);
}
}
}
int main()
{
scanf("%d%d",&m,&n);
for(int i=1;i<=n;i++)
{
scanf("%d%d%d",&X,&Y,&T);
a[X][Y]=++T;//这里把T的值+1,避免和0重复。
}
for(int i=1;i<=m;i++)
for(int j=1;j<=m;j++)
d[i][j]=MN;//赋极大值
dfs(1,1,0,0);
if(d[m][m]==MN) d[m][m]=-1;//未更新就说明没找到
printf("%d",d[m][m]);
return 0;
}