一、题目
codeforces
题目描述
维护一个数列
a
a
a,要求下列两项操作:
- 区间加上某一值
- 询问区间,把每一个值当做下标,问 ∑ f a i \sum f_{a_i} ∑fai, f f f是斐波那契数列, f 0 = f 1 = 1 , f i = f i − 1 + f i − 2 f_0=f_1=1,f_i=f_{i-1}+f_{i-2} f0=f1=1,fi=fi−1+fi−2
二、解法
考虑到斐波那契数列的计算方式,可以用矩阵来维护线段树,线段树上维护两个矩阵,一个
2
×
1
2\times1
2×1,表示当前的斐波那契数列项和前一项,懒标记就用转移矩阵的次方表示,直接用线段树的基本操作就行了。
#include <cstdio>
#include <cstring>
const int MOD = 1e9+7;
int read()
{
int x=0,flag=1;char c;
while((c=getchar())<'0' || c>'9') if(c=='-') flag=-1;
while(c>='0' && c<='9') x=(x<<3)+(x<<1)+(c^48),c=getchar();
return x*flag;
}
int n,m;
struct Matrix
{
int n,m,a[3][3];
Matrix() {n=m=0;memset(a,0,sizeof a);}
Matrix operator * (const Matrix &B) const
{
Matrix R;
R.n=n;R.m=B.m;
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
{
if(a[i][j]==0) continue;
for(int k=1;k<=B.m;k++)
R.a[i][k]=(R.a[i][k]+1ll*a[i][j]*B.a[j][k])%MOD;
}
return R;
}
Matrix operator + (const Matrix &B) const
{
Matrix R;
R.n=n;R.m=m;
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
R.a[i][j]=(a[i][j]+B.a[i][j])%MOD;
return R;
}
void print()
{
puts("---------------");
for(int i=1;i<=n;i++,puts(""))
for(int j=1;j<=m;j++)
printf("%d ",a[i][j]);
puts("---------------");
}
}A,B,C,I,emp;
struct node
{
Matrix val,la;
node() {}
node(Matrix V,Matrix L) : val(V) , la(L) {}
}tr[400005];
Matrix qkpow(Matrix a,int b)
{
Matrix r;
r.n=r.m=a.n;
for(int i=1;i<=r.n;i++) r.a[i][i]=1;
while(b>0)
{
if(b&1) r=r*a;
a=a*a;
b>>=1;
}
return r;
}
void build(int i,int l,int r)
{
if(l==r)
{
tr[i]=node(qkpow(A,read()-1)*B,I);
return ;
}
int mid=(l+r)>>1;
build(i<<1,l,mid);
build(i<<1|1,mid+1,r);
tr[i]=node(tr[i<<1].val+tr[i<<1|1].val,I);
}
void down(int i)
{
int ls=i<<1,rs=i<<1|1;
tr[ls].val=tr[i].la*tr[ls].val;
tr[rs].val=tr[i].la*tr[rs].val;
tr[ls].la=tr[i].la*tr[ls].la;
tr[rs].la=tr[i].la*tr[rs].la;
tr[i].la=I;
}
void updata(int i,int l,int r,int L,int R)
{
if(l>R || L>r) return ;
if(L<=l && r<=R)
{
tr[i].val=C*tr[i].val;
tr[i].la=C*tr[i].la;
return ;
}
int mid=(l+r)>>1;
down(i);
updata(i<<1,l,mid,L,R);
updata(i<<1|1,mid+1,r,L,R);
tr[i].val=tr[i<<1].val+tr[i<<1|1].val;
}
Matrix query(int i,int l,int r,int L,int R)
{
if(l>R || L>r) return emp;
if(L<=l && r<=R) return tr[i].val;
int mid=(l+r)>>1;
down(i);
return query(i<<1,l,mid,L,R)+query(i<<1|1,mid+1,r,L,R);
}
int main()
{
A.n=A.m=B.n=I.n=I.m=emp.n=2;B.m=emp.m=1;
A.a[1][1]=A.a[1][2]=A.a[2][1]=I.a[1][1]=I.a[2][2]=B.a[1][1]=1;
n=read();m=read();
build(1,1,n);
while(m--)
{
int op=read(),l=read(),r=read();
if(op==1)
{
C=qkpow(A,read());
updata(1,1,n,l,r);
}
else
{
Matrix t=query(1,1,n,l,r);
printf("%d\n",t.a[1][1]);
}
}
}