前言
最近在学习用Python编写深度学习程序,在处理MNIST数据库时,遇到一些问题,现将解决方法总结如下。第一次写博客,又是半路出家,希望大家多多指正!
使用Pycharm开发环境,Python 3.9,参考书为吴喜之、张敏编著的《深度学习入门—基于Python的实现》。
一、MNIST数据库是什么?
MNIST数据库为包含了手写数字数据的一个大型库,被广泛用于训练各种图像处理系统。可以说这是一个经典数据库,所以大多数人刚开始学习深度学习时应该都会接触。
MNIST手写数字数据库包含60000张训练图像和10000张测试图像。数据中的每个观测值的自变量都有28*28=784个值,代表各个像素的深浅,每个观测值的因变量(label)为该观测值相应的真实数字。
二、数据库下载
书中及网上都有许多数据库的下载方法,网上资源:http://yann.lecun.com/exdb/mnist/,http://deeplearning.net/data/mnist/等等;书中资源的话,它将网上下载的MNIST数据库进行了文件格式的转化:mnist.pkl,并且书中的教学程序也都是基于这个文件;而问题就在于,这个文件资源在我下载的出版社资源包中并未给出,而网上的需要钱(我不知道哪有免费的);当然,也有大佬给出了下载、转换.pkl文件的代码,如下:
# coding: utf-8
try:
import urllib.request
except ImportError:
raise ImportError('You should use Python 3.x')
import os.path
import gzip
import pickle
import os
import numpy as np
# 记录数据集位置
url_base = 'http://yann.lecun.com/exdb/mnist/'
key_file = {
'train_img': 'train-images-idx3-ubyte.gz',
'train_label': 'train-labels-idx1-ubyte.gz',
'test_img': 't10k-images-idx3-ubyte.gz',
'test_label': 't10k-labels-idx1-ubyte.gz'
}
# 将处理后的数据,保存到本地存储位置
dataset_dir = os.path.dirname(os.path.abspath(__file__))
save_file = dataset_dir + "/mnist.pkl"
train_num = 60000 # 训练集个数
test_num = 10000 # 测试集个数
img_dim = (1, 28, 28) # 每张图片的数据维度
img_size = 784 # 每张图片大小(28*28)
# 将单个具体的原始数据文件下载到本地
def _download(file_name):
file_path = dataset_dir + "/" + file_name
if os.path.exists(file_path):
return
print("Downloading " + file_name + " ... ")
urllib.request.urlretrieve(url_base + file_name, file_path)
print("Done")
# 下载4个数据文件
def download_mnist():
for v in key_file.values():
_download(v)
# 加载label数据,转化为Numpy数据格式
def _load_label(file_name):
file_path = dataset_dir + "/" + file_name
print("Converting " + file_name + " to NumPy Array ...")
with gzip.open(file_path, 'rb') as f:
labels = np.frombuffer(f.read(), np.uint8, offset=8)
print("Done")
return labels
# 加载图片数据,转化为numpy格式(n行,每行784个数字)
def _load_img(file_name):
file_path = dataset_dir + "/" + file_name
print("Converting " + file_name + " to NumPy Array ...")
with gzip.open(file_path, 'rb') as f:
data = np.frombuffer(f.read(), np.uint8, offset=16)
data = data.reshape(-1, img_size)
print("Done")
return data
# 将下载的数据文件转化为numpy格式
def _convert_numpy():
dataset = {}
dataset['train_img'] = _load_img(key_file['train_img'])
dataset['train_label'] = _load_label(key_file['train_label'])
dataset['test_img'] = _load_img(key_file['test_img'])
dataset['test_label'] = _load_label(key_file['test_label'])
return dataset
# 从目标地址下载数据文件,转化为numpy格式,并保存为pickle文件
def init_mnist():
download_mnist()
dataset = _convert_numpy()
print("Creating pickle file ...")
with open(save_file, 'wb') as f:
pickle.dump(dataset, f, -1)
print("Done!")
# 将标签数据,转化为one_hot格式(正确数字对应下标为1,其他为0)
# 例如,原标签为[2,3],转化后为:
# [[0,0,1,0,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0,0,0,0]]
def _change_one_hot_label(X):
T = np.zeros((X.size, 10))
for idx, row in enumerate(T):
row[X[idx]] = 1
return T
# 主函数,如果第一次调用,从目标地址下载数据文件并处理为numpy后存为本地pickle文件
# 下次调用直接读取pickle文件,并根据参数,处理为相应的格式
def load_mnist(normalize=True, flatten=True, one_hot_label=False):
"""读入MNIST数据集
Parameters
----------
normalize : 将图像的像素值正规化为0.0~1.0
one_hot_label :
one_hot_label为True的情况下,标签作为one-hot数组返回
one-hot数组是指[0,0,1,0,0,0,0,0,0,0]这样的数组
flatten : 是否将图像展开为一维数组
Returns
-------
(训练图像, 训练标签), (测试图像, 测试标签)
"""
if not os.path.exists(save_file):
init_mnist()
with open(save_file, 'rb') as f:
dataset = pickle.load(f)
if normalize:
for key in ('train_img', 'test_img'):
dataset[key] = dataset[key].astype(np.float32)
dataset[key] /= 255.0
if one_hot_label:
dataset['train_label'] = _change_one_hot_label(dataset['train_label'])
dataset['test_label'] = _change_one_hot_label(dataset['test_label'])
if not flatten:
for key in ('train_img', 'test_img'):
dataset[key] = dataset[key].reshape(-1, 1, 28, 28)
return (dataset['train_img'], dataset['train_label']), (dataset['test_img'], dataset['test_label'])
if __name__ == '__main__':
init_mnist()
转载:https://blog.csdn.net/aitizhiren/article/details/106887584。
以上程序实现了MNIST数据库的下载、定义调用函数,上述转载里有简单的数据库图片展示程序。
三、数据库的简单使用
建立一个神经网络分类模型,训练模型,记录损失。
代码如下(示例):
from MNIST import load_mnist
import torch
from torch import autograd,nn
import torch.optim as optim
import numpy as np
import matplotlib.pyplot as plt
#训练模型
bs=100 #100个观测值为一个批次
(x_train,t_train),(x_test,t_test)=load_mnist(flatten=True,normalize=False)
x_train,t_train,x_test,t_test=map(torch.tensor,(x_train,t_train,x_test,t_test))
#数据包装
train=torch.utils.data.TensorDataset(x_train,t_train)
test=torch.utils.data.TensorDataset(x_test,t_test)
train_loader=torch.utils.data.DataLoader(train,batch_size=bs)
test_loader=torch.utils.data.DataLoader(test,batch_size=bs)
#2个隐含层的神经网络
D_in=784
H=[128,64]
D_out=10
model=nn.Sequential(nn.Linear(D_in,H[0]),
nn.ReLU(),
nn.Linear(H[0],H[1]),
nn.ReLU(),
nn.Linear(H[1],D_out),
nn.LogSoftmax(dim=1))
NLL=nn.NLLLoss()#损失函数为负对数似然损失
optimizer=optim.SGD(model.parameters(),lr=0.003,momentum=0.9)#梯度下降方优化函数optim.SGD
L=[]
epochs=20
for e in range(epochs):
running_loss=0
for images,labels in train_loader:
optimizer.zero_grad()
images=images.type(torch.FloatTensor)
loss=NLL(model(images),labels)
loss.backward()
optimizer.step()
running_loss+=loss.item()
L.append(running_loss/len(train_loader))
plt.figure(figsize=(10,3))
plt.plot(np.arange(1,21),np.array(L))
plt.ylabel("Running loss")
plt.xlabel("Epoch")
plt.xticks(np.arange(1,21))
plt.show()
以上程序来自参考书以及一些改编。
接下来就可以用训练好的模型进行测试集的验证。