Python学习小结——有关MNIST数据库


前言

最近在学习用Python编写深度学习程序,在处理MNIST数据库时,遇到一些问题,现将解决方法总结如下。第一次写博客,又是半路出家,希望大家多多指正!

使用Pycharm开发环境,Python 3.9,参考书为吴喜之、张敏编著的《深度学习入门—基于Python的实现》。

一、MNIST数据库是什么?

MNIST数据库为包含了手写数字数据的一个大型库,被广泛用于训练各种图像处理系统。可以说这是一个经典数据库,所以大多数人刚开始学习深度学习时应该都会接触。

MNIST手写数字数据库包含60000张训练图像和10000张测试图像。数据中的每个观测值的自变量都有28*28=784个值,代表各个像素的深浅,每个观测值的因变量(label)为该观测值相应的真实数字。

二、数据库下载

书中及网上都有许多数据库的下载方法,网上资源:http://yann.lecun.com/exdb/mnist/,http://deeplearning.net/data/mnist/等等;书中资源的话,它将网上下载的MNIST数据库进行了文件格式的转化:mnist.pkl,并且书中的教学程序也都是基于这个文件;而问题就在于,这个文件资源在我下载的出版社资源包中并未给出,而网上的需要钱(我不知道哪有免费的);当然,也有大佬给出了下载、转换.pkl文件的代码,如下:

# coding: utf-8
try:
    import urllib.request
except ImportError:
    raise ImportError('You should use Python 3.x')
import os.path
import gzip
import pickle
import os
import numpy as np

#  记录数据集位置
url_base = 'http://yann.lecun.com/exdb/mnist/'
key_file = {
    'train_img': 'train-images-idx3-ubyte.gz',
    'train_label': 'train-labels-idx1-ubyte.gz',
    'test_img': 't10k-images-idx3-ubyte.gz',
    'test_label': 't10k-labels-idx1-ubyte.gz'
}

# 将处理后的数据,保存到本地存储位置
dataset_dir = os.path.dirname(os.path.abspath(__file__))
save_file = dataset_dir + "/mnist.pkl"

train_num = 60000 # 训练集个数
test_num = 10000 # 测试集个数
img_dim = (1, 28, 28) # 每张图片的数据维度
img_size = 784 # 每张图片大小(28*28)

# 将单个具体的原始数据文件下载到本地
def _download(file_name):
    file_path = dataset_dir + "/" + file_name
    if os.path.exists(file_path):
        return

    print("Downloading " + file_name + " ... ")
    urllib.request.urlretrieve(url_base + file_name, file_path)
    print("Done")

# 下载4个数据文件
def download_mnist():
    for v in key_file.values():
        _download(v)

# 加载label数据,转化为Numpy数据格式
def _load_label(file_name):
    file_path = dataset_dir + "/" + file_name

    print("Converting " + file_name + " to NumPy Array ...")
    with gzip.open(file_path, 'rb') as f:
        labels = np.frombuffer(f.read(), np.uint8, offset=8)
    print("Done")

    return labels

# 加载图片数据,转化为numpy格式(n行,每行784个数字)
def _load_img(file_name):
    file_path = dataset_dir + "/" + file_name

    print("Converting " + file_name + " to NumPy Array ...")
    with gzip.open(file_path, 'rb') as f:
        data = np.frombuffer(f.read(), np.uint8, offset=16)
    data = data.reshape(-1, img_size)
    print("Done")

    return data

# 将下载的数据文件转化为numpy格式
def _convert_numpy():
    dataset = {}
    dataset['train_img'] = _load_img(key_file['train_img'])
    dataset['train_label'] = _load_label(key_file['train_label'])
    dataset['test_img'] = _load_img(key_file['test_img'])
    dataset['test_label'] = _load_label(key_file['test_label'])

    return dataset

# 从目标地址下载数据文件,转化为numpy格式,并保存为pickle文件
def init_mnist():
    download_mnist()
    dataset = _convert_numpy()
    print("Creating pickle file ...")
    with open(save_file, 'wb') as f:
        pickle.dump(dataset, f, -1)
    print("Done!")

# 将标签数据,转化为one_hot格式(正确数字对应下标为1,其他为0)
# 例如,原标签为[2,3],转化后为:
# [[0,0,1,0,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0,0,0,0]]
def _change_one_hot_label(X):
    T = np.zeros((X.size, 10))
    for idx, row in enumerate(T):
        row[X[idx]] = 1

    return T

#  主函数,如果第一次调用,从目标地址下载数据文件并处理为numpy后存为本地pickle文件
#  下次调用直接读取pickle文件,并根据参数,处理为相应的格式
def load_mnist(normalize=True, flatten=True, one_hot_label=False):
    """读入MNIST数据集

    Parameters
    ----------
    normalize : 将图像的像素值正规化为0.0~1.0
    one_hot_label :
        one_hot_label为True的情况下,标签作为one-hot数组返回
        one-hot数组是指[0,0,1,0,0,0,0,0,0,0]这样的数组
    flatten : 是否将图像展开为一维数组

    Returns
    -------
    (训练图像, 训练标签), (测试图像, 测试标签)
    """
    if not os.path.exists(save_file):
        init_mnist()

    with open(save_file, 'rb') as f:
        dataset = pickle.load(f)

    if normalize:
        for key in ('train_img', 'test_img'):
            dataset[key] = dataset[key].astype(np.float32)
            dataset[key] /= 255.0

    if one_hot_label:
        dataset['train_label'] = _change_one_hot_label(dataset['train_label'])
        dataset['test_label'] = _change_one_hot_label(dataset['test_label'])

    if not flatten:
        for key in ('train_img', 'test_img'):
            dataset[key] = dataset[key].reshape(-1, 1, 28, 28)

    return (dataset['train_img'], dataset['train_label']), (dataset['test_img'], dataset['test_label'])


if __name__ == '__main__':
    init_mnist()

转载:https://blog.csdn.net/aitizhiren/article/details/106887584。
以上程序实现了MNIST数据库的下载、定义调用函数,上述转载里有简单的数据库图片展示程序。

三、数据库的简单使用

建立一个神经网络分类模型,训练模型,记录损失。
代码如下(示例):

from MNIST import load_mnist
import torch
from torch import autograd,nn
import torch.optim as optim
import numpy as np
import matplotlib.pyplot as plt

#训练模型
bs=100  #100个观测值为一个批次
(x_train,t_train),(x_test,t_test)=load_mnist(flatten=True,normalize=False)
x_train,t_train,x_test,t_test=map(torch.tensor,(x_train,t_train,x_test,t_test))
#数据包装
train=torch.utils.data.TensorDataset(x_train,t_train)
test=torch.utils.data.TensorDataset(x_test,t_test)
train_loader=torch.utils.data.DataLoader(train,batch_size=bs)
test_loader=torch.utils.data.DataLoader(test,batch_size=bs)

#2个隐含层的神经网络
D_in=784
H=[128,64]
D_out=10
model=nn.Sequential(nn.Linear(D_in,H[0]),
                    nn.ReLU(),
                    nn.Linear(H[0],H[1]),
                    nn.ReLU(),
                    nn.Linear(H[1],D_out),
                    nn.LogSoftmax(dim=1))

NLL=nn.NLLLoss()#损失函数为负对数似然损失
optimizer=optim.SGD(model.parameters(),lr=0.003,momentum=0.9)#梯度下降方优化函数optim.SGD
L=[]
epochs=20
for e in range(epochs):
    running_loss=0
    for images,labels in train_loader:
        optimizer.zero_grad()
        images=images.type(torch.FloatTensor)

        loss=NLL(model(images),labels)
        loss.backward()
        optimizer.step()
        running_loss+=loss.item()
    L.append(running_loss/len(train_loader))

plt.figure(figsize=(10,3))
plt.plot(np.arange(1,21),np.array(L))
plt.ylabel("Running loss")
plt.xlabel("Epoch")
plt.xticks(np.arange(1,21))
plt.show()

以上程序来自参考书以及一些改编。
接下来就可以用训练好的模型进行测试集的验证。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值