Content
重要提示: 🚀🚀 MNIST之前的网页和数据集下载采用的是HTTP协议,后续更新后采用的是HTTPS协议。MNIST官网和四个数据集的网址链接都变成了https开头,再使用原来的网址会出现禁止访问等问题。本篇博客已于 2024-08-24 更新了网址链接。
随着图像处理、计算机视觉、机器学习,甚至深度学习的蓬勃发展,一个良好的数据集作为学习和测试相关算法非常重要。MNIST数据集是深度学习和计算机视觉领域入门级的数据集,类似于编程语言的Hello Word。MNIST数据集对于想要学习和测试相关算法,同时又不想花费大量的时间收集和整理数据集的人们来说,这是一个很好的数据库。MNIST数据集官方地址为:https://yann.lecun.com/exdb/mnist/😆😆😆
https://yann.lecun.com/exdb/mnist/
一、数据集基本介绍
MNIST(modified national institute of standard and technology)数据集是由Yann LeCun及其同事于1994年创建一个大型手写数字数据库(包含0~9十个数字)。MNIST数据集的原始数据来源于美国国家标准和技术研究院(national institute of standard and technology)的两个数据集:special database 1和special database 3。它们分别由NIST的员工和美国高中生手写的0-9的数字组成。原始的这两个数据集由128×128像素的黑白图像组成。LeCun等人将其进行归一化和尺寸调整后得到的是28×28的灰度图像。
MNIST数据集总共包含两个子数据集:一个训练数据集和一个测试数据集。它们分别包含了60K和10K的28×28的灰度图像。MNIST文件包含四个不属于任何标准格式的文件,因此它们需要专门进行编程方可阅读,当然也可以使用PyTorch的torchvision.datasets.MINIST API接口直接读取。
考虑到MNIST数据集只有0-9这10个数字的局限性,类似于MNIST数据集的两个新的数据集被提出,分别是Fasion-MNIST和EMNIST数据集。Fasion-MNIST数据集为服装类型的灰度图像数据集。EMNIST数据集则是包含大写、小写和0-9数字的灰度图像数据集。
MNIST训练集图像、训练集标签、测试集图像和测试及标签如下表:
数据集 | MNIST中的文件名 | 下载地址 | 文件大小 |
---|---|---|---|
训练集图像 | train-images-idx3-ubyte.gz | https://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz | 9912422字节 |
训练集标签 | train-labels-idx1-ubyte.gz | https://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz | 28881字节 |
测试集图像 | t10k-images-idx3-ubyte.gz | https://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz | 1648877字节 |
测试集标签 | t10k-labels-idx1-ubyte.gz | https://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz | 4542字节 |
==注意:==若是通过浏览器下载该文件,浏览器可能会在你不知情的情况下自动解压缩该文件。因此,下载的文件大小与上面的表格大小不一致,可能就是被自动解压了。
二、下载MNIST数据集到本地
【这里给出了多种下载方式,宝子们根据情况选择🔥🔥】
- 通过博主分享的百度网盘下载公开数据集MNIST;
- 通过代码直接下载;💥💥💥
- 通过PyTorch的torchvision.datasets.MNIST接口下载,并将数据集保存为JPEG图片保存到本地。⭐️⭐️⭐️
(一)使用百度网盘下载
博主已将MNIST公开数据集上传至百度网盘,大家可以直接下载学习。这里提供两种类型的文件:
- MNIST原始格式的文件;
- 保存为JPEG格式的文件,其中文件名包含了其属于train还是test数据集,以及在子数据集中的编号和真值标签。
- 原始格式的数据集下载
链接:https://pan.baidu.com/s/1jAPlVKLYamJn6I63GD6HDg?pwd=azq2
提取码:azq2
- JPEG格式数据集下载
链接:https://pan.baidu.com/s/1TaL3dCHxAj17LgvSSd_eTA?pwd=xl8n
提取码:xl8n
(二)使用Python脚本下载
使用wget.download(url, out=None, bar=bar_adaptive)
下载。
首先确保自己的Python环境安装有wget
这个第三方库,否则pip install wget
安装。使用下面脚本会自动下载MNIST数据集的四个文件到download_minst(save_dir: str = None)
所传入的保存路径save_dir
中。
"""
下载MNIST数据集脚本
"""
import os
from pathlib import Path
import logging
import wget
logging.basicConfig(level=logging.INFO, format="%(message)s")
def download_minst(save_dir: str = None) -> bool:
"""下载MNIST数据集
输入参数:
save_dir: MNIST数据集的保存地址. 类型: 字符串.
返回值:
全部下载成功返回True, 否则返回False
"""
save_dir = Path(save_dir)
train_set_imgs_addr = save_dir / "train-images-idx3-ubyte.gz"
train_set_labels_addr = save_dir / "train-labels-idx1-ubyte.gz"
test_set_imgs_addr = save_dir / "t10k-images-idx3-ubyte.gz"
test_set_labels_addr = save_dir / "t10k-labels-idx1-ubyte.gz"
try:
if not os.path.exists(train_set_imgs_addr):
logging.info("下载train-images-idx3-ubyte.gz")
filename = wget.download(url="http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz", out=str(train_set_imgs_addr))
logging.info("\tdone.")
else:
logging.info("train-images-idx3-ubyte.gz已经存在.")
if not os.path.exists(train_set_labels_addr):
logging.info("下载train-labels-idx1-ubyte.gz.")
filename = wget.download(url="http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz", out=str(train_set_labels_addr))
logging.info("\tdone.")
else:
logging.info("train-labels-idx1-ubyte.gz已经存在.")
if not os.path.exists(test_set_imgs_addr):
logging.info("下载t10k-images-idx3-ubyte.gz.")
filename = wget.download(url="http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz", out=str(test_set_imgs_addr))
logging.info("\tdone.")
else:
logging.info("t10k-images-idx3-ubyte.gz已经存在.")
if not os.path.exists(test_set_labels_addr):
logging.info("下载t10k-labels-idx1-ubyte.gz.")
filename = wget.download(url="http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz", out=str(test_set_labels_addr))
logging.info("\tdone.")
else:
logging.info("t10k-labels-idx1-ubyte.gz已经存在.")
except:
return False
return True
if __name__ == "__main__":
download_minst(save_dir="./")
(三)通过torchvision.datasets.MNIST下载并保存到本地为JPEG图片
这里需要安装PyTorch和Pillow库,下载和保存的Python代码如下:
#!/usr/bin/env python3
# -*- encoding utf-8 -*-
'''
@File: save_mnist_to_jpg.py
@Date: 2024-08-23
@Author: KRISNAT
@Version: 0.0.0
@Email: ****
@Copyright: (C)Copyright 2024, KRISNAT
@Desc:
1. 通过 torchvision.datasets.MNIST 下载、解压和读取 MNIST 数据集;
2. 使用 PIL.Image.save 将 MNIST 数据集中的灰度图片以 JPEG 格式保存。
'''
import sys, os
sys.path.insert(0, os.getcwd())
from torchvision.datasets import MNIST
import PIL
from tqdm import tqdm
if __name__ == "__main__":
# 图片保存路径
root = 'mnist_jpg'
if not os.path.exists(root):
os.makedirs(root)
# 从网络上下载或从本地加载MNIST数据集
# 训练集60K、测试集10K
# torchvision.datasets.MNIST接口下载的数据一组元组
# 每个元组的结构是: (PIL.Image.Image image model=L size=28x28, 标签数字 int)
training_dataset = MNIST(
root='mnist',
train=True,
download=True,
)
test_dataset = MNIST(
root='mnist',
train=False,
download=True,
)
# 保存训练集图片
with tqdm(total=len(training_dataset), ncols=150) as pro_bar:
for idx, (X, y) in enumerate(training_dataset):
f = root + "/" + "training_" + str(idx) + \
"_" + str(training_dataset[idx][1] )+ ".jpg" # 文件路径
training_dataset[idx][0].save(f)
pro_bar.update(n=1)
# 保存测试集图片
with tqdm(total=len(test_dataset), ncols=150) as pro_bar:
for idx, (X, y) in enumerate(test_dataset):
f = root + "/" + "test_" + str(idx) + \
"_" + str(test_dataset[idx][1] )+ ".jpg" # 文件路径
test_dataset[idx][0].save(f)
pro_bar.update(n=1)
保存后的JPEG如下图所示,图片命名的格式为:子数据集名_在子数据集中的编号_真实值标签。
三、使用Python解析MNIST数据集文件
不同于我们常见到的数据集图片通过jpg
这样的图片格式保存,标签通过txt
、xml
、json
等常规文本文件保存。MNIST的图片和标签均通过二进制文件进行保存,也就是我们无法直接在Windows中查看手写数字的图片和标签,必须要先解码。
MNITS的编码格式如下:
-
训练集
-
测试集
从上面官方提供的编码格式可以看出,MNIST的图片和标签均采用二进制编码,图片二进制编码文件的前16个字节(Byte)为描述性内容,我们可以不管,因为我们已经知道MNIST训练集60000张图片、测试集10000张图片,所有图片分辨率为28*28
,因此可以直接通过Python自带的gzip
工具读取MNIST数据集的图片和标签二进制编码文件,再通过numpy.frombuffer()
方法解析读取到的二进制信息,解析MNIST二进制文件的Python脚本如下:
"""
通过gzip和numpy解析MNIST数据集的二进制文件
"""
import os
import gzip
import logging
import numpy as np
logging.basicConfig(format="%(message)s", level=logging.DEBUG) # 设置Python日志管理工具的消息格式和显示级别
def parse_mnist(minst_file_addr: str = None, flatten: bool = False, one_hot: bool = False) -> np.array:
"""解析MNIST二进制文件, 并返回解析结果
输入参数:
minst_file: MNIST数据集的文件地址. 类型: 字符串.
flatten: bool, 默认Fasle. 是否将图片展开, 即(n张, 28, 28)变成(n张, 784)
one_hot: bool, 默认Fasle. 标签是否采用one hot形式.
返回值:
解析后的numpy数组
"""
if minst_file_addr is not None:
minst_file_name = os.path.basename(minst_file_addr) # 根据地址获取MNIST文件名字
with gzip.open(filename=minst_file_addr, mode="rb") as minst_file:
mnist_file_content = minst_file.read()
if "label" in minst_file_name: # 传入的为标签二进制编码文件地址
data = np.frombuffer(buffer=mnist_file_content, dtype=np.uint8, offset=8) # MNIST标签文件的前8个字节为描述性内容,直接从第九个字节开始读取标签,并解析
if one_hot:
data_zeros = np.zeros(shape=(data.size, 10))
for idx, label in enumerate(data):
data_zeros[idx, label] = 1
data = data_zeros
else: # 传入的为图片二进制编码文件地址
data = np.frombuffer(buffer=mnist_file_content, dtype=np.uint8, offset=16) # MNIST图片文件的前16个字节为描述性内容,直接从第九个字节开始读取标签,并解析
data = data.reshape(-1, 784) if flatten else data.reshape(-1, 28, 28)
else:
logging.warning(msg="请传入MNIST文件地址!")
return data
if __name__ == "__main__":
data = parse_mnist(minst_file_addr="./t10k-labels-idx1-ubyte.gz") # t10k-images-idx1-ubyte.gz文件应该和本脚本在同一个目录下,否则应该修改地址
print(len(data)) # 10000
print(data[0:10]) # [7 2 1 0 4 1 4 9 5 9]
四、显示MNIST数据集中训练集的前9张图片和标签
通过上一步解析后的MNIST数据已经是numpy.narray数据类型,可以直接通过pillow
、opencv
和matplotlib
库直接可视化了。此处博主通过matplotlib
库可视化MNIST训练集的前9张图片及其标签,代码和效果如下:
"""
通过gzip和numpy解析MNIST数据集的二进制文件, 并可视化训练集前10张图片和标签
"""
import os
import gzip
import logging
import numpy as np
import matplotlib.pyplot as plt
logging.basicConfig(format="%(message)s", level=logging.DEBUG) # 设置Python日志管理工具的消息格式和显示级别
plt.rcParams["font.sans-serif"] = "SimHei" # 确保plt绘图正常显示中文
plt.rcParams["figure.figsize"] = [9, 10] # 设置plt绘图尺寸
def parse_mnist(minst_file_addr: str = None) -> np.array:
"""解析MNIST二进制文件, 并返回解析结果
输入参数:
minst_file: MNIST数据集的文件地址. 类型: 字符串.
返回值:
解析后的numpy数组
"""
if minst_file_addr is not None:
minst_file_name = os.path.basename(minst_file_addr) # 根据地址获取MNIST文件名字
with gzip.open(filename=minst_file_addr, mode="rb") as minst_file:
mnist_file_content = minst_file.read()
if "label" in minst_file_name: # 传入的为标签二进制编码文件地址
data = np.frombuffer(buffer=mnist_file_content, dtype=np.uint8, offset=8) # MNIST标签文件的前8个字节为描述性内容,直接从第九个字节开始读取标签,并解析
else: # 传入的为图片二进制编码文件地址
data = np.frombuffer(buffer=mnist_file_content, dtype=np.uint8, offset=16) # MNIST图片文件的前16个字节为描述性内容,直接从第九个字节开始读取标签,并解析
data = data.reshape(-1, 28, 28)
else:
logging.warning(msg="请传入MNIST文件地址!")
return data
if __name__ == "__main__":
train_imgs = parse_mnist(minst_file_addr="train-images-idx3-ubyte.gz") # 训练集图像
train_labels = parse_mnist(minst_file_addr="train-labels-idx1-ubyte.gz") # 训练集标签
# 可视化
fig, ax = plt.subplots(ncols=3, nrows=3)
ax[0, 0].imshow(train_imgs[0], cmap=plt.cm.gray)
ax[0, 0].set_title(f"标签为{train_labels[0]}")
ax[0, 1].imshow(train_imgs[1], cmap=plt.cm.gray)
ax[0, 1].set_title(f"标签为{train_labels[1]}")
ax[0, 2].imshow(train_imgs[2], cmap=plt.cm.gray)
ax[0, 2].set_title(f"标签为{train_labels[2]}")
ax[1, 0].imshow(train_imgs[3], cmap=plt.cm.gray)
ax[1, 0].set_title(f"标签为{train_labels[3]}")
ax[1, 1].imshow(train_imgs[4], cmap=plt.cm.gray)
ax[1, 1].set_title(f"标签为{train_labels[4]}")
ax[1, 2].imshow(train_imgs[5], cmap=plt.cm.gray)
ax[1, 2].set_title(f"标签为{train_labels[5]}")
ax[2, 0].imshow(train_imgs[6], cmap=plt.cm.gray)
ax[2, 0].set_title(f"标签为{train_labels[6]}")
ax[2, 1].imshow(train_imgs[7], cmap=plt.cm.gray)
ax[2, 1].set_title(f"标签为{train_labels[7]}")
ax[2, 2].imshow(train_imgs[8], cmap=plt.cm.gray)
ax[2, 2].set_title(f"标签为{train_labels[8]}")
plt.show() # 显示绘图
print(plt.rcParams.keys())
创作不易,若觉得此篇博文有用的观众老爷,不妨点赞
👍➕收藏
🌟💯🚀