1. 什么是 GAN
GAN包含有两个模型,一个是生成模型(generative model),一个是判别模型(discriminative model)。生成模型的任务是生成加的数据。判别模型的任务是识别数据是真还是假。
2. GAN简述
GAN 的基本结构
打个比方,警察和小偷。小偷负责造假的商品,警察负责鉴别商品真假。小偷不断改良,警察不断识别,直到警察不能识别真假,即小偷能够以假乱真的时候,这个模型就训练完成了
3. GAN与传统神经网络的不同
这个模型和传统的神经网络不同的是:
传统的神经网络是想办法去通过数据算出答案
GAN 的做法是,我直接掀桌子,我直接去套答案,拟合答案,错了再改,改到对了为止
上图绿色即 GAN 的拟合过程