GAN概述

本文探讨了生成对抗网络(GAN)的原理,如何通过生成器和判别器实现创造性数据生成,及其在AI写作、图像修复、数据增强等方面的应用。重点介绍了GAN的训练过程,以及无监督学习下可能产生的有趣现象和Conditional GAN的监督性改进。
摘要由CSDN通过智能技术生成

Generative adversarial network(GAN)生成对抗网络

1、GAN的初衷就是生成不存在于真实世界的数据。类似于使得AI具有创造力或者想象力。

应用场景:

①AI作家、AI画家等需要创造力的AI体

②将模糊图变清晰(去雨、去雾、去抖动、去马赛克等),这需要AI具有所谓的“想象力”,能脑补情节

③进行数据增强,根据已有数据生成更多数据供以feed,可以减缓模型过拟合现象

2、GAN原理

GAN的两大护法:G、D

G是generator,生成器: 负责凭空捏造数据出来

D是discriminator,判别器: 负责判断数据是不是真数据

在最原始的GAN论文里,G和D都是两个

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值