mini-batch的定义和用法

最近重新学习神经网络的一些基础知识,顺便对一些知识点做一下梳理,今天说一说在现在神经网络中常看到的一个词叫mini-batch。简单地说,因为梯度更新的时候有三种方式:
第一种是batch gradient descent(批梯度下降),这种方式模型遍历所有数据后计算损失函数然后更新梯度,这样计算过于复杂,所以引出第二种。
第二种是stochastic gradient descent(随机梯度下降),就是每读取一个数据就计算损失函数更新梯度,这样的结果就是单个数据差异大,导致训练波动大,收敛性不太好,这就引出了第三种。
第三种是mini-batch gradient descent(小批量梯度下降)。其目的就是中和前两种方法的特点和不足。随机选取数据中一定量的数据进行训练,然后计算损失函数更新梯度,这样既不会有更与复杂的计算量,又不会训练过于缓慢。

补充一下,最近阅读斋藤康毅的深度学习入门一书时,他将mini-batch的梯度下降称之为SGD随机梯度下降。他说随机指的是随机选择这个小批量的数据。我觉得他这个更有说服力一些。当然,前面的三种方法理解其中的意思和他们的优缺点就可以。
本文参考了博主CodeCraker的文章,https://blog.csdn.net/weixin_39502247/article/details/80032487

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

少卿不在大理寺

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值