Ubuntu18.04LTS下基于 Anaconda3 安装和编译 Caffe-GPU

Caffe 专栏收录该内容
22 篇文章 0 订阅

这篇博客为在Ubuntu18.04上基于 Anaconda3 安装编译 Caffe-GPU的详细教程中第三步。由于教程之详细,放在一篇博客中影响阅读体验,所以按照安装顺序分为了三个部分,具体每一部分点开链接即可访问。

一、Ubuntu18.04下Anaconda3的安装与配置

二、Ubuntu18.04下安装Cudnn9.0和Cuda7.0

三、Ubuntu18.04下基于 Anaconda3 安装和编译 Caffe-GPU



在终端输入

sudo apt install caffe-cuda

1. 基本依赖库的安装

sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev
sudo apt-get install libhdf5-serial-dev protobuf-compiler
sudo apt-get install --no-install-recommends libboost-all-dev
sudo apt-get install libopenblas-dev liblapack-dev libatlas-base-dev
sudo apt-get install libgflags-dev libgoogle-glog-dev liblmdb-dev

安装截图如下:
在这里插入图片描述

2. 配置

2.1. Clone源码

首先我们要从GitHub的远端下载caffe的源码

git clone https://github.com/BVLC/caffe.git

在这里插入图片描述

2.2. 配置Makefile.config文件

cd caffe
sudo cp Makefile.config.example Makefile.config
sudo vim Makefile.config

vim编辑器中,在命令行输入set number ,回车,可以显示行号。
将第5行注释去除

USE_CUDNN:= 1

在这里插入图片描述

OPENCV_VERSION := 3

在这里插入图片描述
将第37和38行注释或者删除.
修改前:
在这里插入图片描述
修改后:
在这里插入图片描述
将第53行BLAS:= atlas注销,换成BLAS := open.
在这里插入图片描述
将Python2环境注销,换成Anaconda3下的Python环境.
在这里插入图片描述
对这句取消注释:

PYTHON_LIBRARIES := boost_python-py36 python3.6m

将PYTHON_LIB:= /usr/lib注释
取消PYTHON_LIB:= $(ANACONDA_HOME)/lib的注释
在这里插入图片描述
若要使用python来编写layer,则将#WITH_PYTHON_LAYER := 1取消注释.
在这里插入图片描述
将# Whatever else you find you need goes here.下面的代码修改

INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include
LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib  

修改为:

INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include /usr/include/hdf5/serial
LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib /usr/lib/x86_64-linux-gnu /usr/lib/x86_64-linux-gnu/hdf5/serial

vim命令行中输入:wq,可以保存并退出。

2.3. 配置Makefile文件

在终端输入:

sudo vim Makefile

做如下修改:

PYTHON_LIBRARIES ?= boost_python python2.7
修改为:
PYTHON_LIBRARIES ?= boost_python-py36 python3.6m
NVCCFLAGS +=-ccbin=$(CXX) -Xcompiler-fPIC $(COMMON_FLAGS)
修改为:
NVCCFLAGS += -D_FORCE_INLINES -ccbin=$(CXX) -Xcompiler -fPIC $(COMMON_FLAGS)

如图所示:
在这里插入图片描述

将:
LIBRARIES += glog gflags protobuf boost_system boost_filesystem m hdf5_hl hdf5
改为:
LIBRARIES += glog gflags protobuf boost_system boost_filesystem m hdf5_serial_hl hdf5_serial

3. Caffe源码中安装Python的必要项

在终端输入:

cd /home/li.guangyao/Programming/caffe/python 
pip install --upgrade python-dateutil
for req in $(cat requirements.txt); do pip install $req; done

此步可能会出现以下错误(如果没出现请忽略此步):

pandas 0.22.0 has requirement python-dateutil>=2, but you'll have python-dateutil 1.5 which is incompatible.
matplotlib 2.1.2 has requirement python-dateutil>=2.1, but you'll have python-dateutil 1.5 which is incompatible.
jupyter-client 5.2.2 has requirement python-dateutil>=2.1, but you'll have python-dateutil 1.5 which is incompatible.
bokeh 0.12.13 has requirement python-dateutil>=2.1, but you'll have python-dateutil 1.5 which is incompatible.
anaconda-client 1.6.9 has requirement python-dateutil>=2.6.1, but you'll have python-dateutil 1.5 which is incompatible.

解决办法见:错误:pandas 0.23.3 has requirement python-dateutil>=2.5.0, but you’ll have python-dateutil 1.5解决方法

4. 编译

进入caffe的根目录下

cd /home/li.guangyao/Programming/caffe
sudo make clean
sudo make all -j16 		//-j16表示使用16核处理器执行当前指令

在这里插入图片描述
继续在终端执行:

sudo make test -j16       //最好加上sudo防止有些文件的访问权限不够

在这里插入图片描述
继续在终端执行:

sudo make runtest -j16         //最好加上sudo防止有些文件的访问权限不够

此步可能会出现以下错误(如果没出现请忽略此步):

.build_release/tools/caffe
.build_release/tools/caffe: error while loading shared libraries: libhdf5_hl.so.100: cannot open shared object file: No such file or directory
Makefile:545: recipe for target 'runtest' failed
make: *** [runtest] Error 127

解决办法见:完美解决错误:libhdf5_hl.so.100(XXX): cannot open shared object file: No such file or directory,Error127
在这里插入图片描述
继续在终端执行:

sudo make pycaffe -j16 		//配置pycaffe

结果如图:
在这里插入图片描述
在终端执行:

vim ~/.bashrc

在最后加入以下代码:

export PYTHONPATH=~/Programming/caffe/python:$PYTHONPATH

在这里插入图片描述

source ~/.bashrc

5. 验证测试

在终端输入Python,进行测试.
在命令行输入:

import caffe

回车。
此步可能出现以下错误(如果不报错,请忽略此步)

Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "/home/li.guangyao/Programming/caffe/python/caffe/__init__.py", line 1, in <module>
    from .pycaffe import Net, SGDSolver, NesterovSolver, AdaGradSolver, RMSPropSolver, AdaDeltaSolver, AdamSolver, NCCL, Timer
  File "/home/li.guangyao/Programming/caffe/python/caffe/pycaffe.py", line 13, in <module>
    from ._caffe import Net, SGDSolver, NesterovSolver, AdaGradSolver, \
ImportError: /home/li.guangyao/Programming/caffe/python/caffe/_caffe.so: undefined symbol: _ZN5boost6python6detail11init_moduleER11PyModuleDefPFvvE

错误原因:测试boost的版本,需要大于1.55.
解决方法见:
错误:caffe.so: undefined symbol: _ZN5boost6python6detail11init_moduleER11PyModuleDefPFvvE解决方法
在这里插入图片描述
Congratulations!Caffe-GPU编译成功!

如需查看上一步,请点击:

第二步:Ubuntu18.04下安装Cudnn9.0和Cuda7.0


&lt;p> 需要学习Windows系统YOLOv4的同学请前往《Windows版YOLOv4目标检测实战:原理与源码解析》, &lt;/p> &lt;p> 课程链接 https://edu.csdn.net/course/detail/29865 &lt;/p> &lt;h3> &lt;span style="color:#3598db;">【为什么要学习这门课】&lt;/span> &lt;/h3> &lt;p> &lt;span>Linux&lt;/span>创始人&lt;span>Linus Torvalds&lt;/span>有一句名言:&lt;span>Talk is cheap. Show me the code. &lt;/span>&lt;strong>&lt;span style="color:#ba372a;">冗谈不够,放码过来!&lt;/span>&lt;/strong> &lt;/p> &lt;p> &lt;span> &lt;/span>代码阅读是从基础到提高的必由之路。尤其对深度学习,许多框架隐藏了神经网络底层的实现,只能在上层调包使用,对其内部原理很难认识清晰,不利于进一步优化创新。 &lt;/p> &lt;p> YOLOv4是最近推出的基于深度学习的端到端实时目标检测方法。 &lt;/p> &lt;p> YOLOv4的实现darknet是使用C语言开发的轻型开源深度学习框架,依赖少,可移植性好,可以作为很好的代码阅读案例,让我们深入探究其实现原理。 &lt;/p> &lt;h3> &lt;span style="color:#3598db;">【课程内容与收获】&lt;/span> &lt;/h3> &lt;p> 本课程将解析YOLOv4的实现原理源码,具体内容包括: &lt;/p> &lt;p> - YOLOv4目标检测原理&lt;br /> - 神经网络及darknet的C语言实现,尤其是反向传播的梯度求解误差计算&lt;br /> - 代码阅读工具及方法&lt;br /> - 深度学习计算的利器:BLASGEMM&lt;br /> - GPU的CUDA编程方法及在darknet的应用&lt;br /> - YOLOv4的程序流程 &lt;/p> &lt;p> - YOLOv4各层及关键技术的源码解析 &lt;/p> &lt;p> 本课程将提供注释后的darknet的源码程序文件。 &lt;/p> &lt;h3> &lt;strong>&lt;span style="color:#3598db;">【相关课程】&lt;/span>&lt;/strong> &lt;/h3> &lt;p> 除本课程《YOLOv4目标检测:原理与源码解析》外,本人推出了有关YOLOv4目标检测的系列课程,包括: &lt;/p> &lt;p> 《YOLOv4目标检测实战:训练自己的数据集》 &lt;/p> &lt;p> 《YOLOv4-tiny目标检测实战:训练自己的数据集》 &lt;/p> &lt;p> 《YOLOv4目标检测实战:人脸口罩佩戴检测》&lt;br /> 《YOLOv4目标检测实战:中国交通标志识别》 &lt;/p> &lt;p> 建议先学习一门YOLOv4实战课程,对YOLOv4的使用方法了解以后再学习本课程。 &lt;/p> &lt;h3> &lt;span style="color:#3598db;">【YOLOv4网络模型架构图】&lt;/span> &lt;/h3> &lt;p> 图由白勇老师绘制 &lt;/p> &lt;p> &lt;img alt="" src="https://img-bss.csdnimg.cn/202006291526195469.jpg" /> &lt;/p> &lt;p>   &lt;/p> &lt;p> &lt;img alt="" src="https://img-bss.csdnimg.cn/202007011518185782.jpg" /> &lt;/p>
&lt;h4 style="font-weight:500;font-size:1.5rem;font-family:&#39;PingFang SC&#39;, &#39;Hiragino Sans GB&#39;, Arial, &#39;Microsoft YaHei&#39;, Verdana, Roboto, Noto, &#39;Helvetica Neue&#39;, sans-serif;color:#222226;background-color:#ffffff;text-align:center;"> &lt;span style="font-size:14px;">期末&lt;/span>&lt;span style="font-size:14px;background-color:#fbeeb8;">考点&lt;/span>&lt;span style="font-size:14px;">都对应&lt;/span>&lt;span style="font-size:14px;background-color:#fbeeb8;">详解视频&lt;/span>&lt;span style="font-size:14px;">,&lt;/span>&lt;span style="font-size:14px;">&lt;span style="color:#e03e2d;">基础阶段&lt;/span>&lt;/span>&lt;span style="font-size:14px;">内容全面,语言通俗易懂(翻译书中的语言为&lt;/span>&lt;span style="font-size:14px;background-color:#fbeeb8;">人话)&lt;/span>&lt;span style="font-size:14px;">,&lt;/span> &lt;/h4> &lt;h4 style="font-weight:500;font-size:1.5rem;font-family:&#39;PingFang SC&#39;, &#39;Hiragino Sans GB&#39;, Arial, &#39;Microsoft YaHei&#39;, Verdana, Roboto, Noto, &#39;Helvetica Neue&#39;, sans-serif;color:#222226;background-color:#ffffff;text-align:center;"> &lt;span style="font-size:14px;">老师精心研究&lt;/span>&lt;span style="font-size:14px;background-color:#fbeeb8;">百份&lt;/span>&lt;span style="font-size:14px;">考卷,总结每一个考点,同时结合你肯定可以听懂的骚话,&lt;/span> &lt;/h4> &lt;h4 style="font-weight:500;font-size:1.5rem;font-family:&#39;PingFang SC&#39;, &#39;Hiragino Sans GB&#39;, Arial, &#39;Microsoft YaHei&#39;, Verdana, Roboto, Noto, &#39;Helvetica Neue&#39;, sans-serif;color:#222226;background-color:#ffffff;text-align:center;"> &lt;span style="font-size:14px;background-color:#fbeeb8;">扫清你的数据库系统盲区&lt;/span> &lt;/h4> &lt;h4 style="font-weight:500;font-size:1.5rem;font-family:&#39;PingFang SC&#39;, &#39;Hiragino Sans GB&#39;, Arial, &#39;Microsoft YaHei&#39;, Verdana, Roboto, Noto, &#39;Helvetica Neue&#39;, sans-serif;color:#222226;background-color:#ffffff;text-align:center;"> &lt;span style="font-size:14px;">&lt;span style="color:#e03e2d;">真题阶段&lt;/span>&lt;/span>&lt;span style="font-size:14px;">为你提供&lt;/span>&lt;span style="font-size:14px;background-color:#fbeeb8;">解题思路&lt;/span>&lt;span style="font-size:14px;">,培养你的&lt;/span>&lt;span style="font-size:14px;background-color:#fbeeb8;">解题思维&lt;/span>&lt;span style="font-size:14px;">,同时&lt;/span>&lt;span style="font-size:14px;background-color:#fbeeb8;">点明考点&lt;/span>&lt;span style="font-size:14px;">,结合文档进行重点解读,加深你的印象.&lt;/span> &lt;/h4> &lt;h4 style="font-weight:500;font-size:1.5rem;font-family:&#39;PingFang SC&#39;, &#39;Hiragino Sans GB&#39;, Arial, &#39;Microsoft YaHei&#39;, Verdana, Roboto, Noto, &#39;Helvetica Neue&#39;, sans-serif;color:#222226;background-color:#ffffff;text-align:center;"> &lt;span style="font-size:14px;color:#3598db;">只为你的高分,我们交个朋友!让每位学生都可以学的起!!&lt;/span> &lt;/h4> &lt;p> &lt;span style="font-size:14px;color:#3598db;">&lt;img src="https://img-bss.csdnimg.cn/202103040423318088.png" alt="" width="788" height="450" />&lt;/span> &lt;/p>
©️2021 CSDN 皮肤主题: 技术黑板 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值