吴恩达机器学习Day3

特征缩放能加速梯度下降过程,学习曲线用于评估模型收敛性。若成本函数J波动,可能需调整学习率。特征工程能创建新特征,如多项式回归中的x3,以提升模型性能。
摘要由CSDN通过智能技术生成

特征缩放(归一化):将范围缩小到0-1内;

特征缩放会使梯度下降更快。

学习曲线:

帮助你看到你的成本J在每次大下降迭代后的变化;

通过这学习曲线可以发现梯度下降是否收敛;

成本函数J有时上升有时下降,表明梯度下降不能正常工作;可能是学习率α过大;可以适当调小学习率;

学习率:按比例慢慢调;

特征工程:通过转换或结合原有特征,利用直觉去构造一个新的特征;

此例子中的x3。

多项式回归:

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值