吴恩达机器学习Day4

本文介绍了有监督学习中的分类算法,特别是逻辑回归。逻辑回归是一种广泛使用的分类方法,与线性回归相比,其决策边界是通过sigmoid函数形成的曲线。讨论了决策边界如何依赖于逻辑函数,并指出在逻辑回归中,平方误差代价函数并不适用,而需要选择更适合的代价函数。
摘要由CSDN通过智能技术生成

有监督类算法②:

分类算法:

输出结果常常是:

"0"or"1";

"yes"or"no";

"ture"or"false";

"negativeclass"or"positive class";

用线性回归算法解决分类,可能会奏效,但通常效果不佳;

例如:

逻辑回归:

使用最广泛的分类算法;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值