神经网络做二分类 loss=0.6931一直不下降

昨天做二分类的时候遇到一个问题,不管自己的网络怎么训练二元交叉熵的loss一直为0.6931,不管我改变超参数还是初始化的权重和偏倚总是不变,最后去看了一下大家有没有遇到这个问题,结果发现

log(0.5)=0.6931

也就是说你的准确度在0.5左右,我第一反应0.5也不是很差啊!等等,0.5???二分类的准确度为0.5左右,这和我直接猜有什么区别吗????搞事???我思前想后发现网络的结构啥的也没有问题呀,这时我灵光一现该不会是!!!!!!

数据出错了!!!!

把数据理了一遍,果然出问题了。我传入网络的2D张量只有第一组的数据是正确的,其他的由于循序的地方提前return了,导致数据没有传全!!!!

U1S1,下次一定注意!哈哈哈哈

<< 为了可视化给定的数据,我们可以创建两个折线图:一个是损失(Loss)随训练轮次的变化趋势;另一个是准确率(Accuracy)随训练轮次的变化趋势。以下是详细的分析和 Python 实现代码示例。 --- ### 数据观察 从提供的数据中可以看到: - 初始阶段(前几轮 Epochs),损失迅速下降,但准确率变化大; - 第 12 轮开始,准确率逐步上升,在第 21 轮达到最大值 \(100\%\) 并保持变; - 损失持续降低直到接近零,表明模型几乎完美拟合了训练数据。 因此,可以推断这是一个典型的监督学习过程中的表现曲线——随着迭代次数增加,模型逐渐优化参数使预测结果更加贴近真实标签。 接下来我们用Python绘制出这两条关键指标的走势图像以便直观地理解整体动态行为特征... ```python import matplotlib.pyplot as plt # 定义每一轮 epoch 的数据 epochs = list(range(1, 31)) losses = [0.6830, 0.6530, 0.6156, 0.5802, 0.5406, 0.4997, 0.4687, 0.4307, 0.3798, 0.3409, 0.3241, 0.2812, 0.2670, 0.2308, 0.2095, 0.1895, 0.1808, 0.1570, 0.1482, 0.1338, 0.1184, 0.1010, 0.1039, 0.0867, 0.0772, 0.0647, 0.0622, 0.0523, 0.0465, 0.0444] accuracies = [61.90, 78.57, 78.57, 78.57, 78.57, 78.57, 78.57, 78.57, 78.57, 78.57, 78.57, 80.95, 85.71, 90.48, 95.24, 97.62, 97.62, 97.62, 97.62, 97.62, 100.00, 100.00, 100.00, 100.00, 100.00, 100.00, 100.00, 100.00, 100.00] # 创建图表 plt.figure(figsize=(12, 6)) # 子图1 - Loss 曲线 plt.subplot(1, 2, 1) plt.plot(epochs, losses, label='Loss', color='red') plt.title('Training Loss Over Time') plt.xlabel('Epoch') plt.ylabel('Loss Value') plt.legend() # 子图2 - Accuracy 曲线 plt.subplot(1, 2, 2) plt.plot(epochs, accuracies, label='Accuracy', color='blue') plt.title('Training Accuracy Over Time') plt.xlabel('Epoch') plt.ylabel('Accuracy (%)') plt.ylim([min(accuracies)-5, max(accuracies)+5]) # 设置y轴范围更紧凑展示细节 plt.legend() # 显示最终图形 plt.tight_layout() # 自动调整布局防止重叠 plt.show() ``` --- ### 图像解释 生成后的两张子图为: 1. 左侧为“Loss”变化曲线:显示每次epoch期间计算得出的目标函数误差大小如何递减收敛于较小数值区域附近波动趋于平稳停止进一步改进。 2. 右侧为“Accuracy”增长轨迹:反映算法分类性能逐步提升直至饱和点的过程描述即正确辨识样本比例断攀升直至所有测试案例均被成功识别完毕为止的状态记录。 通过这样的双维度视图有助于开发者监控机器学习项目的进展状况并且及时发现可能存在的问题例如过早终止或者过度拟合等情况进而采取适当的策略予以纠正从而获得更好的泛化能力和实战效果。
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值