<<
为了可视化给定的数据,我们可以创建两个折线图:一个是损失(Loss)随训练轮次的变化趋势;另一个是准确率(Accuracy)随训练轮次的变化趋势。以下是详细的分析和 Python 实现代码示例。
---
### 数据观察
从提供的数据中可以看到:
- 初始阶段(前几轮 Epochs),损失迅速下降,但准确率变化不大;
- 第 12 轮开始,准确率逐步上升,在第 21 轮达到最大值 \(100\%\) 并保持不变;
- 损失持续降低直到接近零,表明模型几乎完美拟合了训练数据。
因此,可以推断这是一个典型的监督学习过程中的表现曲线——随着迭代次数增加,模型逐渐优化参数使预测结果更加贴近真实标签。
接下来我们用Python绘制出这两条关键指标的走势图像以便直观地理解整体动态行为特征...
```python
import matplotlib.pyplot as plt
# 定义每一轮 epoch 的数据
epochs = list(range(1, 31))
losses = [0.6830, 0.6530, 0.6156, 0.5802, 0.5406,
0.4997, 0.4687, 0.4307, 0.3798, 0.3409,
0.3241, 0.2812, 0.2670, 0.2308, 0.2095,
0.1895, 0.1808, 0.1570, 0.1482, 0.1338,
0.1184, 0.1010, 0.1039, 0.0867, 0.0772,
0.0647, 0.0622, 0.0523, 0.0465, 0.0444]
accuracies = [61.90, 78.57, 78.57, 78.57, 78.57,
78.57, 78.57, 78.57, 78.57, 78.57,
78.57, 80.95, 85.71, 90.48, 95.24,
97.62, 97.62, 97.62, 97.62, 97.62,
100.00, 100.00, 100.00, 100.00, 100.00,
100.00, 100.00, 100.00, 100.00]
# 创建图表
plt.figure(figsize=(12, 6))
# 子图1 - Loss 曲线
plt.subplot(1, 2, 1)
plt.plot(epochs, losses, label='Loss', color='red')
plt.title('Training Loss Over Time')
plt.xlabel('Epoch')
plt.ylabel('Loss Value')
plt.legend()
# 子图2 - Accuracy 曲线
plt.subplot(1, 2, 2)
plt.plot(epochs, accuracies, label='Accuracy', color='blue')
plt.title('Training Accuracy Over Time')
plt.xlabel('Epoch')
plt.ylabel('Accuracy (%)')
plt.ylim([min(accuracies)-5, max(accuracies)+5]) # 设置y轴范围更紧凑展示细节
plt.legend()
# 显示最终图形
plt.tight_layout() # 自动调整布局防止重叠
plt.show()
```
---
### 图像解释
生成后的两张子图为:
1. 左侧为“Loss”变化曲线:显示每次epoch期间计算得出的目标函数误差大小如何递减收敛于较小数值区域附近波动趋于平稳停止进一步改进。
2. 右侧为“Accuracy”增长轨迹:反映算法分类性能逐步提升直至饱和点的过程描述即正确辨识样本比例不断攀升直至所有测试案例均被成功识别完毕为止的状态记录。
通过这样的双维度视图有助于开发者监控机器学习项目的进展状况并且及时发现可能存在的问题例如过早终止或者过度拟合等情况进而采取适当的策略予以纠正从而获得更好的泛化能力和实战效果。