【深度学习】虚拟环境配置常用命令行

以下记录我个人常用到的命令行,写这篇博客备忘,如有错误,请多指教!

我使用的是conda进行管理虚拟环境:

创建python 3.7版本的虚拟环境

conda create -n venv python=3.7   # 此处venv是你为虚拟环境起的名字

激活虚拟环境

#on windows
conda activate venv

退出虚拟环境

#on windows
conda deactivate

删除虚拟环境

# 删除一个已有环境
conda remove --name venv --all

其他(以下例子中venv为虚拟环境名称,查看的具体包是numpy)

# 列出系统存在虚拟环境,这两句效果一样
conda info -e
conda env list

# 查看当前环境下已安装的包
conda list

# 查看某个指定环境的已安装包
conda list -n venv

# 查找package信息
conda search numpy

# 安装package
conda install -n venv numpy
# 如果不用-n指定环境名称,则被安装在当前激活环境
# 也可以通过-c指定通过某个channel安装

# 更新package
conda update -n venv numpy

# 删除package
conda remove -n venv numpy

如果安装包的速度太慢的话就切换成国内镜像。

国内的镜像源(网上有很多,我从别人那里复制来的哈哈哈)

阿里云 
http://mirrors.aliyun.com/pypi/simple/

中国科技大学 
https://pypi.mirrors.ustc.edu.cn/simple/

豆瓣(douban) 
http://pypi.douban.com/simple/

清华大学 
https://pypi.tuna.tsinghua.edu.cn/simple/

中国科学技术大学 
http://pypi.mirrors.ustc.edu.cn/simple/

我安装tensorflow2环境使用的命令:

conda create -n tensorflow2 python=3.7  #先创建环境

conda activate tensorflow  #然后一定要进入环境!!!

pip install -i https://pypi.tuna.tsinghua.edu.cn/simple/ tensorflow==2.10

pip install tensorflow-addons==0.19 

pip install pillow=9.5

conda install scikit-learn==1.0.2

pip install numpy==1.21.6

conda install pandas==1.3.5

我使用的版本:

python==3.7.16

tensorflow==2.10.0

keras==2.10.0

tensorflow-addons==0.19.0

pillow==9.5.0

scikit-learn==1.0.2

numpy==1.21.6

pandas==1.3.5

最后,看到我有有conda install安装的,也有用pip install安装的,这两个都能用来下载安装,那为什么不全部用统一的呢?我也有这个疑问,之前看到一篇文章说的是最好先用conda安装,如果安装失败了就用pip安装,原因我也忘记了。好奇的大家自行百度吧哈哈哈哈哈具体什么原因我也说不清楚

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值