以下记录我个人常用到的命令行,写这篇博客备忘,如有错误,请多指教!
我使用的是conda进行管理虚拟环境:
创建python 3.7版本的虚拟环境
conda create -n venv python=3.7 # 此处venv是你为虚拟环境起的名字
激活虚拟环境
#on windows
conda activate venv
退出虚拟环境
#on windows
conda deactivate
删除虚拟环境
# 删除一个已有环境
conda remove --name venv --all
其他(以下例子中venv为虚拟环境名称,查看的具体包是numpy)
# 列出系统存在虚拟环境,这两句效果一样
conda info -e
conda env list
# 查看当前环境下已安装的包
conda list
# 查看某个指定环境的已安装包
conda list -n venv
# 查找package信息
conda search numpy
# 安装package
conda install -n venv numpy
# 如果不用-n指定环境名称,则被安装在当前激活环境
# 也可以通过-c指定通过某个channel安装
# 更新package
conda update -n venv numpy
# 删除package
conda remove -n venv numpy
如果安装包的速度太慢的话就切换成国内镜像。
国内的镜像源(网上有很多,我从别人那里复制来的哈哈哈)
阿里云
http://mirrors.aliyun.com/pypi/simple/中国科技大学
https://pypi.mirrors.ustc.edu.cn/simple/豆瓣(douban)
http://pypi.douban.com/simple/清华大学
https://pypi.tuna.tsinghua.edu.cn/simple/中国科学技术大学
http://pypi.mirrors.ustc.edu.cn/simple/
我安装tensorflow2环境使用的命令:
conda create -n tensorflow2 python=3.7 #先创建环境
conda activate tensorflow #然后一定要进入环境!!!
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple/ tensorflow==2.10
pip install tensorflow-addons==0.19
pip install pillow=9.5
conda install scikit-learn==1.0.2
pip install numpy==1.21.6
conda install pandas==1.3.5
我使用的版本:
python==3.7.16
tensorflow==2.10.0
keras==2.10.0
tensorflow-addons==0.19.0
pillow==9.5.0
scikit-learn==1.0.2
numpy==1.21.6
pandas==1.3.5
最后,看到我有有conda install安装的,也有用pip install安装的,这两个都能用来下载安装,那为什么不全部用统一的呢?我也有这个疑问,之前看到一篇文章说的是最好先用conda安装,如果安装失败了就用pip安装,原因我也忘记了。好奇的大家自行百度吧哈哈哈哈哈具体什么原因我也说不清楚