向量L0、L1、L2、L∞范数,矩阵F-范数

本文详细介绍了向量范数(包括L0, L1, L2, L∞及Lp范数)和矩阵范数(特别是Frobenius范数)的概念,解释了它们在优化问题、特征选择和模型正则化中的应用,以及如何通过这些范数实现向量稀疏性和防止模型过拟合。

向量范数

  1. L 0 L_0 L0范数
    ∥ x ∥ 0 \parallel x \parallel _0 x0 向量x中非零元素的个数, L 0 L_0 L0范数用于表达向量的稀疏性
    由于 L 0 L_0 L0优化问题属于NP难问题,因此在实际的使用中通常用 L 1 L_1 L1范数代替

  2. L 1 L_1 L1范数
    ∥ x ∥ 1 = ∑ i = 1 n ∣ x i ∣ \parallel x \parallel _1 = \sum_{i=1}^{n}{|x_i|} x1=i=1nxi 向量x中各元素绝对值之和
    性质: L 1 L_1 L1优化的解为稀疏解。
    因此 L 1 L_1 L1范数被称为稀疏规则算子,可以通过 L 1 L_1 L1算子,可以通过 L 1 L_1 L1范数实现特征的稀疏,过滤掉无用的特征。

  3. L 2 L_2 L2范数
    ∥ x ∥ 2 = ∑ i = 1 n x i 2 \parallel x \parallel _2 = \sqrt {\sum_{i=1}^{n}}x_i^2 x2=i=1n xi2 向量x中各元素平方和开方,通常用来做优化目标函数的正则化项,防止模型过拟合

  4. L ∞ L_\infty L范数
    ∥ x ∥ ∞ = x m a x ∣ x i ∣ \parallel x \parallel _\infty = \stackrel{\mathrm{max|x_i|}}{x}{} x=xmaxxi
    向量x中元素的最大值

  5. L p L_p Lp范数
    ∥ x ∥ p = ∑ i = 1 n x i p , p ∈ [ 0 , + ∞ ) \parallel x \parallel _p = \sqrt {\sum_{i=1}^{n}}x_i^p ,p \in [0,+\infty) xp=i=1n xipp[0,+)

矩阵范数

Frobenius(佛罗贝尼乌斯)范数:矩阵中各元素的平方和开方,简称F-范数
∥ x ∥ F = ∑ i = 1 m ∑ j = 1 n x i j 2 , p ∈ [ 0 , + ∞ ) \parallel x \parallel _F = \sqrt {\sum_{i=1}^{m}\sum_{j=1}^{n}x^2_{i j}},p \in [0,+\infty) xF=i=1mj=1nxij2 p[0,+)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值