优化分析是很多领域中都要面临的一个重要问题,求解优化问题的一般做法是:建立模型、编写算法、求解计算。常见的问题类型有线性规划、非线性规划、混合整数规划、混合整数非线性规划、二次规划等,优化算法包括人工智能算法和内点法等数学类优化方法。算法编写是一个较为复杂的过程,对于规模较大且复杂性较高的优化问题尤其如此,且同一种算法在处理不同问题时参数的设置、架构的改动相对不够便利。而GAMS作为一款功能强大的通用代数建模优化软件,能够化繁为简,避开复杂的算法编写,将使用者的目光更多地聚焦到模型上而非算法上,为各类优化问题的求解带来极大便利。本课程旨在帮助各领域研究人员掌握GAMS这一强大优化工具的使用,更好地解决专业问题,课程内容包括典型优化模型和算法介绍、GAMS安装和介绍、GAMS程序编写、GAMS程序调试、实际应用算例演示与经验分享等五个章节,算例中除了一般案例展示还涵盖了基于GAMS的实际应用案例分析。GAMS是一个通用优化软件,内容适合各领域从事优化研究的工作者,有助于各领域研究人员高效处理该领域内各类复杂的优化问题
第一章
典型优化模型、算法讲解和基于GAMS进行优化分析的优越性
- 典型优化模型(LP、NLP、MIP、MINLP、MIQCP等)
- 人工智能算法(遗传算法、蚁群算法、禁忌搜索等)
- 数学优化方法(分支定界法、动态规划法、拉格朗日松弛法、内点法、奔得斯分解法等)
- 基于GAMS进行数学建模和优化分析的优势
第二章
GAMS安装和界面
- GAMS安装
- File功能
- Edit功能
- Search功能
- Windows功能
- Model Libraries模型库
- Help功能
第三章
GAMS程序编写【讲解+实践操作】
- 模型构成
- 编程原则
- 建立集合Set
-
- 静态集合
- 多重集合
- 动态集合
- 有序集合(SOS1、SOS2)
-
- 录入参数Parameter
-
- 一般标量
- 索引参数
- 表格参数
- 数据导入(Excel表格数据)
- 参数赋值
-
- 设置变量Variable
-
- 一般标量
- 索引参数
- 表格参数
- 数据导入(Excel表格数据)
- 参数赋值
-
- 构建方程Equation
-
- 方程定义
- 方程关系符
- 函数和运算表达
- 标量方程
- 索引方程
- 条件方程(条件控制$)
-
- 计算模型Model solve
-
- 模型的分类和求解
- 计算参数设置(Options)
- 求解器(Solver)的比较分析与选择
-
- 展示结果Display
-
- 变量结果展示
- 参数展示
-
一般算例演示
第四章
GAMS程序调试【讲解+实践操作】
- 查看计算日志
- 分析求解报告
- 程序调试方法
第五章
实际应用算例与经验分享
- 基于GAMS的优化实例分享
- 常用表达式注意事项
- 属性修改的其他方法
- 其他软件调用GAMS