07. 贝叶斯神经网络

本文介绍了贝叶斯神经网络与普通神经网络的区别,重点在于模型推导和算法流程。贝叶斯神经网络的权重服从概率分布,而非确定值。通过变分推断来近似后验概率,使用蒙特卡洛采样进行优化。文中还给出了一个简单的算法流程示例,探讨了权重分布的近似方法和优化目标。
摘要由CSDN通过智能技术生成

算法思路

普通的神经网络的权值是确定的,而贝叶斯神经网络的权值是不确定的,他服从于一个概率分布,这便是贝叶斯神经网络和普通神经网络的差别。

可以简单认为,贝叶斯神经网络是无穷个神经网络的融合,不过给每个神经网络标上一个重要度而已。

普通神经网络训练其权重时,采用的方法无外乎两种:最大似然估计最大后验估计。即:
w M L E = arg ⁡ max ⁡ w log ⁡ P ( D ∣ w ) = arg ⁡ max ⁡ w ∑ i log ⁡ P ( y i ∣ x i , w ) \begin{aligned} w^{MLE} &= \arg\max_{w} \log P(D|w)\\ &= \arg\max_w\sum_i\log P(y_i|x_i,w) \end{aligned} wMLE=argwmaxlogP(Dw)=argwmaxilogP(yixi,w)
w M A P = arg ⁡ max ⁡ w log ⁡ P ( w ∣ D ) = arg ⁡ max ⁡ w log ⁡ P ( D ∣ w ) + log ⁡ P ( w ) − P ( D ) = arg ⁡ max ⁡ w log ⁡ P ( D ∣ w ) + log ⁡ P ( w ) \begin{aligned} w^{MAP}&=\arg\max_w\log P(w|D)\\ &= \arg\max_w\log P(D|w)+\log P(w) - P(D)\\ &= \arg\max_w\log P(D|w)+\log P(w) \end{aligned} wMAP=argwmaxlogP(wD)=argwmaxlogP(Dw)+logP(w)P(D)=argwmaxlogP(Dw)+logP(w)
普通的神经网络就是这样求最值,其每个节点都是一个确定的值, w ⋆ w^\star w
但是神经网络是在假设 P ( w ) P(w) P(w)为先验估计的条件下,直接求解 P ( w ∣ D ) P(w|D) P(wD),每个节点都是一个概率分布。

模型推导

我们的最终目标是求出,对于输入 x x x,输出 y y y的概率分布,即 P ( y ∣ x ) P(y|x) P(yx),显然:
P ( y ∣ x ) = E P ( w ∣ D ) P ( y ∣ x , w ) P(y|x)=\mathbb E_{P(w|D)}P(y|x,w) P(yx)=EP(wD)P(yx,w

  • 1
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值