数据结构——栈和队列及其面试题

1. 利用顺序表实现栈

函数接口:

typedef int SDataType;

typedef struct Stack {
SDataType array[100];
int top;
} Stack;

// 初始化
void StackInit(Stack *pStack);

// 压栈
void StackPush(Stack *pStack, SDataType data);

// 出栈
void StackPop(Stack *pStack);

// 返回栈顶元素
SDataType StackTop(Stack *pStack);

// 判断是否为空
// 1 空
// 0 不空
int StackIsEmpty(Stack *pStack);

// 返回数据个数
int StackSize(Stack *pStack);


2. 利用单链表实现队列

函数接口:

typedef int QDataType;

typedef struct QNode {
QDataType data;
struct QNode *pNext;
} QNode;

typedef struct Queue {
QNode *pFront;
QNode *pRear;
int size;
} Queue;

// 初始化
void QueueInit(Queue *pQueue);

// 入队列
void QueuePush(Queue *pQueue, QDataType data);

// 出队列
void QueuePop(Queue *pQueue);

// 返回队首元素
QDataType QueueFront(Queue *pQueue);

// 判断是否为空
// 1 空
// 0 不空
int QueueIsEmpty(Queue *pQueue);

// 返回数据个数
int QueueSize(Queue *pQueue);

 

#pragma once
#include<stdio.h>
#include<stdlib.h>
#include<assert.h>
typedef int QDataType;

typedef struct QNode {
	QDataType data;
	struct QNode *pNext;
} QNode;

typedef struct Queue {
	QNode *pFront;
	QNode *pRear;
	int size;
} Queue;

// 初始化 
void QueueInit(Queue *pQueue)
{
	assert(pQueue);
	pQueue->pFront = pQueue->pRear = NULL;
	pQueue->size = 0;
}

// 入队列 
void QueuePush(Queue *pQueue, QDataType data)
{
	assert(pQueue);
	pQueue->size++;
	QNode *pNewNode = (QNode*)malloc(sizeof(QNode));
	assert(pNewNode);
	pNewNode->data = data;
	pNewNode->pNext = NULL;

	if (pQueue->pRear == NULL)
	{
		pQueue->pFront = pQueue->pRear = pNewNode;
		return;
	}

	pQueue->pRear->pNext = pNewNode;
	pQueue->pRear = pNewNode;
}

// 出队列 
void QueuePop(Queue *pQueue)
{
	assert(pQueue);
	pQueue->size--;
	QNode *pOldNode = pQueue->pFront;
	pQueue->pFront = pQueue->pFront->pNext;
	free(pOldNode);

	if (pQueue->pFront == NULL)
	{
		pQueue->pRear = NULL;
	}

}

// 返回队首元素 
QDataType QueueFront(Queue *pQueue)
{
	assert(pQueue);
	assert(pQueue->size > 0);
	return pQueue->pFront->data;
}

// 判断是否为空 
// 1 空 
// 0 不空 
int QueueIsEmpty(Queue *pQueue)
{
	return pQueue->size == 0 ? 1 : 0;
}

// 返回数据个数 
int QueueSize(Queue *pQueue)
{
	return pQueue->size;
}
void print2(Queue *pQueue)
{
	assert(pQueue);
	
	QNode *pNode = pQueue->pFront;
	int i = 0;
	for (pNode; i<pQueue->size; pNode = pNode->pNext)
	{
		printf("%d ", pNode->data);
		i++;
	}
	printf("\n");
}
void testQueue()
{
	Queue queue;
	QueueInit(&queue);
	QueuePush(&queue, 1);
	QueuePush(&queue, 2);
	QueuePush(&queue, 3);
	QueuePush(&queue, 4);
	print2(&queue);
	int x = QueueSize(&queue);
	printf("%d\n", x);
	QueuePop(&queue);
	print2(&queue);
}


3. 栈与队列面试题
1) 实现一个栈,要求实现Push(出栈)、Pop(入栈)、Min(返回最小值)的时间复杂度为O(1)
2) 使用两个栈实现一个队列
3) 使用两个队列实现一个栈
4) 元素出栈、入栈顺序的合法性。如入栈的序列(1,2,3,4,5),出栈序列为 (4,5,3,2,1)
5) 一个数组实现两个栈(共享栈) 

 

 

 

#pragma once
typedef void* SDataType;
#include<stdio.h>
#include<stdlib.h>
#include<assert.h>

typedef struct Stack {
	SDataType array[100];
	int top;//表示个数
} Stack;

// 初始化 
void StackInit(Stack *pStack)
{
	assert(pStack != NULL);
	pStack->top = 0;
}
void Stackdestroy(Stack *pStack)
{
	pStack->top = 0;
}

// 压栈 
void StackPush(Stack *pStack, SDataType data)
{
	assert(pStack);
	if (pStack->top < 100)
	{
		pStack->array[pStack->top] = data;
		pStack->top++;
	}
}

// 出栈 
void StackPop(Stack *pStack)
{
	assert(pStack);
	if (pStack->top > 0)
	{
		pStack->top--;
	}
}

// 返回栈顶元素 
SDataType StackTop(Stack *pStack)
{
	assert(pStack);
	if (pStack->top > 0)
	{
		return pStack->array[pStack->top-1];
	}
}

// 判断是否为空 
// 1 空 
// 0 不空 
int StackIsEmpty(Stack *pStack)
{
	return pStack->top == 0 ? 1 : 0;
}

// 返回数据个数 
int StackSize(Stack *pStack)
{
	return pStack -> top;
}
void print1(Stack *pStack)//打印栈
{
	assert(pStack);
	while (pStack->top)
	{
		printf("%d ", pStack->array[pStack->top - 1]);
		pStack->top--;
	}
	printf("\n");
}
void TestStack()
{
	Stack	stack;
	StackInit(&stack);
	StackPush(&stack, 1);
	StackPush(&stack, 1);
	StackPush(&stack, 1);
	StackPush(&stack, 1);
	int x=StackTop(&stack);
	printf("%d\n", x);

	int y = StackSize(&stack);//元素个数
	printf("%d\n", y);
	int z = StackIsEmpty(&stack);//判空
	printf("%d\n", z);
	StackPop(&stack);//出栈
	print1(&stack);
	Stackdestroy(&stack);
}
//实现一个栈,要求实现Push(出栈)Pop(入栈)、Min(返回最小值)的时间复杂度为O(1)
/*typedef struct MinStack {
	int	array1[100];	// 普通数据
	int top1;
	int array2[100];	// 最小数据
	int top2;
}	MinStack;*/
typedef struct MinStack{
	int array[100];
	int top;
}MinStack;
void Init(MinStack *pStack)
{
	pStack->top = 0;
	//pStack->top1 = pStack->top2 = 0;
}
void Push(MinStack *pStack, int data)
{
	
	int min = data;
	if (pStack->top != 0 && pStack->array[pStack->top - 1] < data)
	{
		min = pStack->array[pStack->top - 1];
	}
	pStack->array[pStack->top++] = data;
	pStack->array[pStack->top++] = min;
	/*if (pStack->top2 != 0 && pStack->array2[pStack->top2-1] < data)
	{
		min = pStack->array2[pStack->top2-1];
	}
	pStack->array1[pStack->top1++] = data;
	pStack->array2[pStack->top2++] = min;*/
}
void Pop(MinStack *pStack)
{
	pStack->top -= 2;
	//pStack->top1--;
	//pStack->top2--;
}
int  Top(MinStack *pStack)
{
	return pStack->array[pStack->top - 2];
	//return  pStack->array1[pStack->top1-1];
}
int Min(MinStack *pStack)
{
	return  pStack->array[pStack->top - 1];
	//return pStack->array2[pStack->top2-1];
}
void TestMinStack()
{
	MinStack  minStack;
	int array[] = { 3, 2, 3, 4, 5, 6, 7, 8, 9 };
	Init(&minStack);
	int i = 0;
	for (; i < sizeof(array) / sizeof(array[0]); i++)
	{
		Push(&minStack, array[i]);
		printf("栈顶元素: %d,Min: %d\n", Top(&minStack), Min(&minStack));
	}
	for (; i < sizeof(array) / sizeof(array[0]); i++) {
		Pop(&minStack);
	}
}
//使用两个栈实现一个队列 
typedef struct SQueue{
	Stack  stack1;//入数据
	Stack  stack2;//出数据
}SQueue;
void SInit(SQueue *PS)
{
	Stack *p1,*p2;
	p1 = &(PS->stack1);
	p2 = &(PS->stack2);
	
	StackInit(p1);
	StackInit(p2);
}
void SPush(SQueue *PS, SDataType data)
{
	Stack *p1, *p2;
	p1 = &(PS->stack1);
	p2 = &(PS->stack2);

	StackPush(p1,data);
}
void SPop(SQueue *PS)
{
	Stack *p1, *p2;
	p1 = &(PS->stack1);
	p2 = &(PS->stack2);
	SDataType data;
	if (StackIsEmpty(p2))
	{
		while (!StackIsEmpty(p1))
		{
			data = StackTop(p1);
			StackPop(p1);
			StackPush(p2, data);
		}
	}
	StackPop(p2);
}
SDataType SFront(SQueue *PS)
{
	Stack *p1, *p2;
	p1 = &(PS->stack1);
	p2 = &(PS->stack2);
	SDataType data;
	if (StackIsEmpty(p2))
	{
		while (!StackIsEmpty(p1))
		{
			data = StackTop(p1);
			StackPop(p1);
			StackPush(p2, data);
		}
	}
	return StackTop(p2);
}
//使用两个队列实现一个栈 
#include "Queue.h"
typedef struct QStack
{
	Queue queue;
}Qstack;
void QInit(Qstack *psd)
{
	QueueInit(&(psd->queue));
}
void QPush(Qstack *psd, SDataType data)
{
	QueuePush(&(psd->queue), data);
}
void QPop(Qstack *psd)
{
	int i;
	SDataType data;
	Queue *PQ = &(psd->queue);
	for (i = 1; i < QueueSize(PQ); i++)
	{
		data = QueueFront(PQ);
		QueuePop(PQ);
		QueuePush(PQ, data);
	}
	QueuePop(PQ);
}
QDataType STop(Qstack *psd)
{
	int i;
	SDataType data;
	Queue *PQ = &(psd->queue);
	for (i = 1; i < QueueSize(PQ); i++)
	{
		data = QueueFront(PQ);
		QueuePop(PQ);
		QueuePush(PQ, data);
	}
	data = QueueFront(PQ);
	QueuePop(PQ);
	QueuePush(PQ, data);
	return data;
}

 

 

 

#pragma once
#include<stdio.h>
//1. 两个数组实现
//2. 不再每次都入最小栈
typedef struct Minstack
{
	int array1[100];
	int top1;//普通数据
	int array2[100];
	int top2;//最小数据
}Minstack;
void Init(Minstack *pS)
{
	pS->top1 = pS->top2 = 0;
}
void Push(Minstack *pS,int data)
{
	pS->array1[pS->top1++] = data;
	if (pS->top2 == 0 || data <= pS->array2[pS->top2 - 1])
	{
		pS->array2[pS->top2++] = data;
	}
}
void Pop(Minstack *pS)
{
	if (pS->array1[pS->top1 - 1] == pS->array2[pS->top2 - 1])
	{
		pS->top2--;
	}
	pS->top1--;
}
int Top(Minstack *pS)
{
	return pS->array1[pS->top1 - 1];
}

int Min(Minstack *pS)
{
	return pS->array2[pS->top2 - 1];
}
void test()
{
	Minstack  minStack;
	int array[] = { 3, 2, 3, 4, 5, 6, 7, 8, 9 };
	Init(&minStack);
	int i = 0;
	for (; i < sizeof(array) / sizeof(array[0]); i++)
	{
		Push(&minStack, array[i]);
		printf("栈顶元素: %d,Min: %d\n", Top(&minStack), Min(&minStack));
	}
	for (; i < sizeof(array) / sizeof(array[0]); i++) {
		Pop(&minStack);
	}
}

 

 


 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值