tensorflow的mnist改写成pytorch

   最近公司使用算法要用pytorch,所以本人暂时放弃使用tensorflow,为了练手pytorch,本人首先使用pytorch将tensorflow版本的mnist转换成pytorch版本,tensorflow原版本如下所示:

from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)


import tensorflow as tf

sess = tf.InteractiveSession()


x = tf.placeholder(tf.float32, shape=[None, 784])
y_ = tf.placeholder(tf.float32, shape=[None, 10])
W = tf.Variable(tf.zeros([784,10]))
b = tf.Variable(tf.zeros([10]))


sess.run(tf.global_variables_initializer())

y = tf.matmul(x,W) + b

cross_entropy = tf.reduce_mean(
    tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y))

train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)

for _ in range(1000):
  batch = mnist.train.next_batch(100)
  train_step.run(feed_dict={x: batch[0], y_: batch[1]})
correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))

accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

print(accuracy.eval(feed_dict={x: mnist.test.images, y_: mnist.test.labels}))

def weight_variable(shape):
  initial = tf.truncated_normal(shape, stddev=0.1)
  return tf.Variable(initial)

def bias_variable(shape):
  initial = tf.constant(0.1, shape=shape)
  return tf.Variable(initial)

def conv2d(x, W):
  return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')

def max_pool_2x2(x):
  return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
                        strides=[1, 2, 2, 1], padding='SAME')

W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])
x_image = tf.reshape(x, [-1,28,28,1])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)

W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)

W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024])

h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])

y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2
cross_entropy = tf.reduce_mean(
    tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y_conv))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

saver = tf.train.Saver()  # defaults to saving all variables

sess.run(tf.global_variables_initializer())
for i in range(20000):
  batch = mnist.train.next_batch(50)
  if i%100 == 0:
    train_accuracy = accuracy.eval(feed_dict={
        x:batch[0], y_: batch[1], keep_prob: 1.0})
    print("step %d, training accuracy %g"%(i, train_accuracy))

  train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})
saver.save(sess, '/home/XXX/learning_tensorflow/form/model.ckpt')  #保存模型参数,注意把这里改为自己的路径

print("test accuracy %g"%accuracy.eval(feed_dict={
    x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))

  改写成pytorch版本后如下所示:

import torch.nn as nn
import torch
import torch.nn.functional as F
from torch.autograd import Variable
import argparse
import torchvision.transforms as transforms
import torchvision.datasets as dsets

train_dataset = dsets.MNIST(root = '../../data_sets/mnist',
                           train = True,
                           transform = transforms.ToTensor(),
                           download = True)

class Net(nn.Module):
    def __init__(self):
        super(Net,self).__init__()
        self.conv1 = nn.Conv2d(1, 32, kernel_size=5,stride=1,padding=2)
        self.conv2 = nn.Conv2d(32, 64, kernel_size=5,stride=1,padding=2)
        self.fc1 = nn.Linear(7*7*64, 1024)
        self.fc2 = nn.Linear(1024,10)

    def forward(self, x, target = None):
        x = F.max_pool2d(F.relu(self.conv1(x)),kernel_size=2,stride=2,padding=0)
        x = F.max_pool2d(F.relu(self.conv2(x)),kernel_size=2,stride=2,padding=0)
        x = x.view(-1,7*7*64)
        x = F.relu(self.fc1(x))
        x = F.dropout(x,training=True)
        x = self.fc2(x)
        x = F.log_softmax(x,dim=1)
        return x

model = Net()

def main(args):
    if args.cuda:
        model.cuda()
    criterion = nn.CrossEntropyLoss()
    training_accuracy = 0
    train_loader = torch.utils.data.DataLoader(dataset = train_dataset,
                                           batch_size = args.batch_size,
                                           shuffle = True)
    optimizer = torch.optim.Adam(model.parameters(), lr=args.learning_rate)
    model.train()
    for epochs in range(1,20000):
        for i,(images,labels) in enumerate(train_loader):
            if args.cuda:
                images, labels = images.cuda(), labels.cuda()
            images = Variable(images.view(-1,1,28,28))
            labels = Variable(labels)
            optimizer.zero_grad()
            outputs = model(images)
            loss = criterion(outputs,labels)
            loss.backward()
            optimizer.step()
            if i%100 == 0:
                pred = outputs.data.max(1)[1]
                training_accuracy += pred.eq(labels.data[1]).sum()
                print('epochs:%d,Loss:%5f,Acuuracy:%g'%(epochs,loss,training_accuracy))
                training_accuracy = 0

if __name__=="__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument('--learning_rate', default=1e-3, type=float, help='learning rate for the stochastic gradient update.')
    parser.add_argument('--batch_size', type=int, default=50, help='input batch size for training (default: 64)')
    parser.add_argument('--cuda', action='store_true', default=True,help='Enable CUDA training')
    args = parser.parse_args()
    main(args)

几点感受:
1.pytorch不需要定义静态图,可以直接上手使用,网络定义更加方便快捷。
2.许多功能定义封装非常完善,不需要自己手写。
3.变量的定义和训练使用非常方便。

参考:
1.https://blog.csdn.net/victoriaw/article/details/72354307
2.https://blog.csdn.net/caichao08/article/details/78997033
3.https://blog.csdn.net/sparta_117/article/details/66965760

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 使用TensorFlow来训练并测试手写数字识别的MNIST数据集十分简单。首先,我们需要导入TensorFlowMNIST数据集: import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data 接下来,我们可以使用input_data.read_data_sets()函数加载MNIST数据集,其中参数为下载数据集的路径。我们可以将数据集分为训练集、验证集和测试集。这里我们将验证集作为模型的参数调整过程,测试集用于最终模型评估。 mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) 接下来,我们可以使用TensorFlow创建一个简单的深度学习模型。首先,我们创建一个输入占位符,用于输入样本和标签。由于MNIST数据集是28x28的图像,我们将其展平为一个784维的向量。 x = tf.placeholder(tf.float32, [None, 784]) y = tf.placeholder(tf.float32, [None, 10]) 接下来,我们可以定义一个简单的全连接神经网络,包含一个隐藏层和一个输出层。我们使用ReLU激活函数,并使用交叉熵作为损失函数。 hidden_layer = tf.layers.dense(x, 128, activation=tf.nn.relu) output_layer = tf.layers.dense(hidden_layer, 10, activation=None, name="output") cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=output_layer, labels=y)) 然后,我们可以使用梯度下降优化器来最小化损失函数,并定义正确预测的准确率。这样就完了模型的构建。 train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy) correct_prediction = tf.equal(tf.argmax(output_layer, 1), tf.argmax(y, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) 接下来,我们可以在一个会话中运行模型。在每次迭代中,我们从训练集中随机选择一批样本进行训练。在验证集上进行模型的参数调整过程,最后在测试集上评估模型的准确率。 with tf.Session() as sess: sess.run(tf.global_variables_initializer()) for i in range(1000): batch_x, batch_y = mnist.train.next_batch(100) sess.run(train_step, feed_dict={x: batch_x, y: batch_y}) val_accuracy = sess.run(accuracy, feed_dict={x: mnist.validation.images, y: mnist.validation.labels}) print("Validation Accuracy:", val_accuracy) test_accuracy = sess.run(accuracy, feed_dict={x: mnist.test.images, y: mnist.test.labels}) print("Test Accuracy:", test_accuracy) 通过这个简单的代码,我们可以使用TensorFlow训练并测试MNIST数据集,并得到测试集上的准确率。 ### 回答2: gan tensorflow mnist是指使用TensorFlow框架训练生对抗网络(GAN)来生手写数字图像的任务。 首先,手写数字数据集是一个非常常见且经典的机器学习数据集。MNIST数据集包含了由0到9之间的手写数字的图像样本。在gan tensorflow mnist任务中,我们的目标是使用GAN来生与这些手写数字样本类似的新图像。 GAN是一种由生器和判别器组的模型。生器任务是生看起来真实的图像,而判别器任务是判断给定图像是真实的(来自训练数据集)还是生的(来自生器)。这两个模型通过对抗训练来相互竞争和提高性能。 在gan tensorflow mnist任务中,我们首先需要准备和加载MNIST数据集。利用TensorFlow的函数和工具,我们可以轻松地加载和处理这些图像。 接下来,我们定义生器和判别器模型。生器模型通常由一系列的卷积、反卷积和激活函数层组,以逐渐生高质量的图像。判别器模型则类似于一个二分类器,它接收图像作为输入并输出真实或生的预测结果。 我们使用TensorFlow的优化器和损失函数定义GAN模型的训练过程。生器的目标是误导判别器,使其将生的图像误认为是真实图像,从而最大限度地降低判别器的损失函数。判别器的目标是准确地区分真实和生的图像,从而最大限度地降低自身的损失函数。 最后,我们使用训练数据集来训练GAN模型。通过多次迭代,生器和判别器的性能会随着时间的推移而得到改善。一旦训练完,我们可以使用生器模型来生新的手写数字图像。 总结来说,gan tensorflow mnist是指使用TensorFlow框架训练生对抗网络来生手写数字图像的任务。通过定义生器和判别器模型,使用优化器和损失函数进行训练,我们可以生类似于MNIST数据集手写数字的新图像。 ### 回答3: 用TensorFlow训练MNIST数据集可以实现手写数字的分类任务。首先我们需要导入相关库和模块,如tensorflow、keras以及MNIST数据集。接着,我们定义模型的网络结构,可以选择卷积神经网络(CNN)或者全连接神经网络(DNN)。对于MNIST数据集,我们可以选择使用CNN,因为它能更好地处理图像数据。 通过调用Keras中的Sequential模型来定义网络结构,可以添加多个层(如卷积层、池化层、全连接层等),用来提取特征和做出分类。其中,输入层的大小与MNIST图片的大小相对应,输出层的大小等于类别的数量(即0~9的数字)。同时,我们可以选择优化器(如Adam)、损失函数(如交叉熵)和评估指标(如准确率)。 接下来,我们用模型编译来配置模型的学习过程。在编译时,我们可以设置优化器、损失函数和评估指标。然后,我们用训练数据对模型进行拟合,通过迭代优化来调整模型的权重和偏置。迭代次数可以根据需要进行调整,以达到训练效果的需求。 训练结束后,我们可以使用测试数据对模型进行评估,获得模型在测试集上的准确率。最后,我们可以使用模型对新的未知数据进行预测,得到相应的分类结果。 综上所述,使用TensorFlow训练MNIST数据集可以实现手写数字的分类任务,通过定义模型结构、编译模型、拟合模型、评估模型和预测来完整个过程。这个过程需要一定的编程知识和理解深度学习的原理,但TensorFlow提供了方便的api和文档,使我们能够相对容易地实现这个任务。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值