从tensorflow转Pytorch的笔记(gather的用法,待补充...)

这篇博客记录了从TensorFlow转向PyTorch的过程,强调PyTorch的灵活性、速度和易用性。作者提到了在PyTorch中的一些关键发现,如_inplace_操作、与numpy的交互、反向传播的梯度累加等,并介绍了常用的库。此外,文章还给出了TensorFlow MNIST示例的PyTorch转换链接。
摘要由CSDN通过智能技术生成

 

从tensorflow转Pytorch的笔记(gather的用法,待补充...)

 

https://blog.csdn.net/CHNguoshiwushuang/article/details/80721675  

tensorflow的mnist改写成pytorch

https://blog.csdn.net/victoriaw/article/details/72354307 PyTorch之示例——MNIST

https://blog.csdn.net/caichao08/article/details/78997033 

神经网络的pytorch实现-基于MNIST数据集

https://blog.csdn.net/sparta_117/article/details/66965760 使用Tensorflow和MNIST识别自己手写的数字

从tensorflow转过来学习Pytorch,对比一下二者的不同:

PyTorch vs TensorFlow,哪个更适合你

为什么要转Pytorc

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值