python机器学习——加州房价

这篇博客主要介绍了使用Python进行机器学习的实践,通过kaggle课程,重点讲解了选择建模数据、处理缺失值、选择预测目标、特征选择、模型构建以及输出预测结果的过程,特别展示了如何对训练数据的前几行进行预测。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

python机器学习——加州房价

跟随kaggle课程练习


学习内容:

L3:
1、 选择建模数据

# 数据经度、纬度、住房年龄中位、一个街区内的总房屋数、一个街区内的总卧室数、
# 人口、家庭总数、收入中位数、房屋价值中位数、是否近海
# 一个街区内的总卧室数有部分缺失值

import pandas as pd
from sklearn.tree import DecisionTreeRegressor
house_file_path = 'Datasets\California Housing Prices\housing.csv'
house_data = pd.read_csv(house_file_path)

2、 处理缺失值

filtered_house_data = house_data.dropna(axis=0)
# 过滤有缺失值的行

3、 选择预测目标

house_predict = ['median_house_value']
y = filtered_house_data[house_predict]  # 将房屋价格中位数设置为预测目标y

4、 选择特征

house_features = ['housing_median_age','total_rooms','total_bedrooms','population','households','median_income&#
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值