POJ 3641 Pseudoprime numbers(快速幂,素数)

Pseudoprime numbers
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 8886 Accepted: 3746

Description

Fermat's theorem states that for any prime number p and for any integer a > 1, ap = a (mod p). That is, if we raise a to the pth power and divide by p, the remainder is a. Some (but not very many) non-prime values of p, known as base-pseudoprimes, have this property for some a. (And some, known as Carmichael Numbers, are base-a pseudoprimes for all a.)

Given 2 < p ≤ 1000000000 and 1 < a < p, determine whether or not p is a base-a pseudoprime.

Input

Input contains several test cases followed by a line containing "0 0". Each test case consists of a line containing p and a.

Output

For each test case, output "yes" if p is a base-a pseudoprime; otherwise output "no".

Sample Input

3 2
10 3
341 2
341 3
1105 2
1105 3
0 0

Sample Output

no
no
yes
no
yes
yes
 
基于费马小定理出的题。关于P是不是素数,读了很久很久。这段英文对我来说跟斯瓦西里语一样(微笑脸)
总之有两个要求,1,p不是素数,2,a的p次方对p取余等于a对p取余。
由于数比较大要用快速幂和long long
最最关键的一点,p的输入在前,a的输入在后。因为输入反了,WA到怀疑人生(大大的微笑脸)
#include<cstdio>
long long check(long long x)
{
	long long i;
	for(i=2;i*i<=x;i++)
	{
		if(x%i==0)
		return 0;
	}
	return 1;
}
long long fff(long long x,long long y,long long z)
{
	long long ans=1;
	while(y>0)
	{
		if(y%2==1)
		ans=(ans*x)%z;
		x=(x*x)%z;
		y=y/2;
	}
	return ans;
}
int main()
{
	long long a,p;
	while(~scanf("%lld%lld",&p,&a))
	{
		if(a==0&&p==0)
		break;
		if(check(p))
		printf("no\n");
		else
		{
			if(fff(a,p,p)==a%p)
			printf("yes\n");
			else
			printf("no\n");
		}
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值