P4053 [JSOI2007] 建筑抢修(贪心)(内附封面)

[JSOI2007] 建筑抢修

题目描述

小刚在玩 JSOI 提供的一个称之为“建筑抢修”的电脑游戏:经过了一场激烈的战斗,T 部落消灭了所有 Z 部落的入侵者。但是 T 部落的基地里已经有 N N N 个建筑设施受到了严重的损伤,如果不尽快修复的话,这些建筑设施将会完全毁坏。现在的情况是:T 部落基地里只有一个修理工人,虽然他能瞬间到达任何一个建筑,但是修复每个建筑都需要一定的时间。同时,修理工人修理完一个建筑才能修理下一个建筑,不能同时修理多个建筑。如果某个建筑在一段时间之内没有完全修理完毕,这个建筑就报废了。你的任务是帮小刚合理的制订一个修理顺序,以抢修尽可能多的建筑。

输入格式

第一行,一个整数 N N N

接下来 N N N 行,每行两个整数 T 1 , T 2 T_1,T_2 T1,T2 描述一个建筑:修理这个建筑需要 T 1 T_1 T1 秒,如果在 T 2 T_2 T2 秒之内还没有修理完成,这个建筑就报废了。

输出格式

输出一个整数 S S S,表示最多可以抢修 S S S 个建筑。

样例 #1

样例输入 #1

4
100 200
200 1300
1000 1250
2000 3200

样例输出 #1

3

提示

对于 100 % 100 \% 100% 的数据, 1 ≤ N < 150000 1 \le N < 150000 1N<150000 1 ≤ T 1 < T 2 < 2 31 1 \le T_1 < T_2 < 2^{31} 1T1<T2<231

大致思路

一道比较简单的贪心题

首先对于这个题目我们应该对什么进行贪心呢?肯定是谁先要报废先修谁,但是这样是不正确的,需要修正。

我们可以用一个大根堆来维护被选中维修的建筑,每次时间不够时删除堆顶,即修复花费最多时间的

因为建筑没有权值,肯定是修的越多越好,因此我们在保证花费时间较少的情况下修复的较多。

AC CODE

#include<bits/stdc++.h>
using namespace std;
#define int long long int 
const int N=1e6+2233;
int n,ans=0;
struct node{
	int t1,t2;
}a[N];
bool cmp(node a,node b){
	return a.t2<b.t2;
}
priority_queue<int>q;
signed main(){
	scanf("%d",&n);
	for(int i=1;i<=n;i++){
		scanf("%d %d",&a[i].t1,&a[i].t2);
	}
	sort(a+1,a+1+n,cmp);
	int now=0;
	for(int i=1;i<=n;i++){
		now+=a[i].t1;
		q.push(a[i].t1);
		if(now<=a[i].t2){
			ans++;
		}
		else {
			now-=q.top();
			q.pop();
		}
	}
	printf("%d",ans);
	return 0;
}

这玩意是蓝题啊????

附封面

请添加图片描述

惯例附几张awa

请添加图片描述
请添加图片描述

请添加图片描述

根据引用[1],dp[u][j]表示在u子树中选取恰好j个人时能获得的最大价值。而根据引用,该问题的时间复杂度为O(log2​104×nm)。 对于洛谷P2143 [JSOI2010] 巨额奖金问题,我们可以使用动态规划来解决。具体步骤如下: 1. 首先,我们需要构建一棵树来表示员工之间的关系。树的根节点表示公司的总经理,其他节点表示员工。每个节点都有一个权值,表示该员工的奖金金额。 2. 接下来,我们可以使用动态规划来计算每个节点的dp值。对于每个节点u,我们可以考虑两种情况: - 如果选择节点u,则dp[u][j] = dp[v][j-1] + value[u],其中v是u的子节点,value[u]表示节点u的奖金金额。 - 如果不选择节点u,则dp[u][j] = max(dp[v][j]),其中v是u的子节点。 3. 最后,我们可以通过遍历树的所有节点,计算出dp[u][j]的最大值,即为所求的巨额奖金。 下面是一个示例代码,演示了如何使用动态规划来解决洛谷P2143 [JSOI2010] 巨额奖金问题: ```python # 构建树的数据结构 class Node: def __init__(self, value): self.value = value self.children = [] # 动态规划求解最大奖金 def max_bonus(root, j): dp = [[0] * (j+1) for _ in range(len(root)+1)] def dfs(node): if not node: return for child in node.children: dfs(child) for k in range(j, 0, -1): dp[node.value][k] = max(dp[node.value][k], dp[node.value][k-1] + node.value) for child in node.children: for k in range(j, 0, -1): for l in range(k-1, -1, -1): dp[node.value][k] = max(dp[node.value][k], dp[node.value][k-l-1] + dp[child.value][l]) dfs(root) return dp[root.value][j] # 构建树 root = Node(1) root.children.append(Node(2)) root.children.append(Node(3)) root.children[0].children.append(Node(4)) root.children[0].children.append(Node(5)) root.children[1].children.append(Node(6)) # 求解最大奖金 j = 3 max_bonus_value = max_bonus(root, j) print("最大奖金为:", max_bonus_value) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值