寻找段落
题目描述
给定一个长度为 n n n 的序列 a a a,定义 a i a_i ai 为第 i i i 个元素的价值。现在需要找出序列中最有价值的“段落”。段落的定义是长度在 [ S , T ] [S, T] [S,T] 之间的连续序列。最有价值段落是指平均值最大的段落。
段落的平均值 等于 段落总价值 除以 段落长度。
输入格式
第一行一个整数 n n n,表示序列长度。
第二行两个整数 S S S 和 T T T,表示段落长度的范围,在 [ S , T ] [S, T] [S,T] 之间。
第三行到第 n + 2 n+2 n+2 行,每行一个整数表示每个元素的价值指数。
输出格式
一个实数,保留 3 3 3 位小数,表示最优段落的平均值。
样例 #1
样例输入 #1
3
2 2
3
-1
2
样例输出 #1
1.000
提示
【数据范围】
对于 30 % 30\% 30% 的数据有 n ≤ 1000 n \le 1000 n≤1000。
对于 100 % 100\% 100% 的数据有 1 ≤ n ≤ 100000 1 \le n \le 100000 1≤n≤100000, 1 ≤ S ≤ T ≤ n 1 \le S \le T \le n 1≤S≤T≤n, − 10 4 ≤ a i ≤ 10 4 -{10}^4 \le a_i \le {10}^4 −104≤ai≤104。
【题目来源】
tinylic 改编
大致思路
对于这道题,我们可以二分答案求解
二分平均值,将a中每个元素减去mid,然后判断是否存在S~T的区间和大于0
然后用单调队列维护一个以 i i i 为终点的最大值的区间(手打队列)
#include<bits/stdc++.h>
using namespace std;
const int N=1e6+2233;
int n,s,t,q[N];
double sum[N],a[N],l,r;
int check(double x){
int l=1,r=0;
sum[0]=0;
for(int i=1;i<=n;i++){
sum[i]=sum[i-1]+a[i]-x;
}
int k=0;
for(int i=s;i<=n;i++){
while(l<=r&&sum[q[r]]>sum[k])r--;
q[++r]=k;
if(i-q[l]>t) l++;
if(sum[i]-sum[q[l]]>1e-8)return 1;
k++;
}
return 0;
}
int main(){
cin>>n>>s>>t;
for(int i=1;i<=n;i++){
cin>>a[i];
}
l=-11451,r=19198;
while(r-l>1e-8){
double mid=(l+r)/2;
if(check(mid)){
l=mid;
}
else r=mid;
}
printf("%.3lf",r);
return 0;
}