P1419 寻找段落(二分答案)(内附封面)

寻找段落

题目描述

给定一个长度为 n n n 的序列 a a a,定义 a i a_i ai 为第 i i i 个元素的价值。现在需要找出序列中最有价值的“段落”。段落的定义是长度在 [ S , T ] [S, T] [S,T] 之间的连续序列。最有价值段落是指平均值最大的段落。

段落的平均值 等于 段落总价值 除以 段落长度

输入格式

第一行一个整数 n n n,表示序列长度。

第二行两个整数 S S S T T T,表示段落长度的范围,在 [ S , T ] [S, T] [S,T] 之间。

第三行到第 n + 2 n+2 n+2 行,每行一个整数表示每个元素的价值指数。

输出格式

一个实数,保留 3 3 3 位小数,表示最优段落的平均值。

样例 #1

样例输入 #1

3
2 2
3
-1
2

样例输出 #1

1.000

提示

【数据范围】

对于 30 % 30\% 30% 的数据有 n ≤ 1000 n \le 1000 n1000

对于 100 % 100\% 100% 的数据有 1 ≤ n ≤ 100000 1 \le n \le 100000 1n100000 1 ≤ S ≤ T ≤ n 1 \le S \le T \le n 1STn − 10 4 ≤ a i ≤ 10 4 -{10}^4 \le a_i \le {10}^4 104ai104

【题目来源】

tinylic 改编

大致思路

对于这道题,我们可以二分答案求解

二分平均值,将a中每个元素减去mid,然后判断是否存在S~T的区间和大于0

然后用单调队列维护一个以 i i i 为终点的最大值的区间(手打队列)

#include<bits/stdc++.h>
using namespace std;
const int N=1e6+2233;
int n,s,t,q[N];
double sum[N],a[N],l,r;
int check(double x){
	int l=1,r=0;
	sum[0]=0;
	for(int i=1;i<=n;i++){
		sum[i]=sum[i-1]+a[i]-x;
	}
	int k=0;
	for(int i=s;i<=n;i++){
		while(l<=r&&sum[q[r]]>sum[k])r--;
		q[++r]=k;
		if(i-q[l]>t) l++;
		if(sum[i]-sum[q[l]]>1e-8)return 1;
		k++;
	}
	return 0;
}
int main(){
	cin>>n>>s>>t;
	for(int i=1;i<=n;i++){
		cin>>a[i];
	}
	l=-11451,r=19198;
	while(r-l>1e-8){
		double mid=(l+r)/2;
		if(check(mid)){
			l=mid;
		}
		else r=mid;
	}
	printf("%.3lf",r);
	return 0;
}

附封面

请添加图片描述

附~

请添加图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值