P1396 营救(最小生成树)(内附封面)

营救

题目背景

“咚咚咚……”“查水表!”原来是查水表来了,现在哪里找这么热心上门的查表员啊!小明感动得热泪盈眶,开起了门……

题目描述

妈妈下班回家,街坊邻居说小明被一群陌生人强行押上了警车!妈妈丰富的经验告诉她小明被带到了 t t t 区,而自己在 s s s 区。

该市有 m m m 条大道连接 n n n 个区,一条大道将两个区相连接,每个大道有一个拥挤度。小明的妈妈虽然很着急,但是不愿意拥挤的人潮冲乱了她优雅的步伐。所以请你帮她规划一条从 s s s t t t 的路线,使得经过道路的拥挤度最大值最小。

输入格式

第一行有四个用空格隔开的 n n n m m m s s s t t t,其含义见【题目描述】。

接下来 m m m 行,每行三个整数 u , v , w u, v, w u,v,w,表示有一条大道连接区 u u u 和区 v v v,且拥挤度为 w w w

两个区之间可能存在多条大道

输出格式

输出一行一个整数,代表最大的拥挤度。

样例 #1

样例输入 #1

3 3 1 3
1 2 2
2 3 1
1 3 3

样例输出 #1

2

提示

数据规模与约定
  • 对于 30 % 30\% 30% 的数据,保证 n ≤ 10 n\leq 10 n10
  • 对于 60 % 60\% 60% 的数据,保证 n ≤ 100 n\leq 100 n100
  • 对于 100 % 100\% 100% 的数据,保证 1 ≤ n ≤ 1 0 4 1 \leq n\leq 10^4 1n104 1 ≤ m ≤ 2 × 1 0 4 1 \leq m \leq 2 \times 10^4 1m2×104 w ≤ 1 0 4 w \leq 10^4 w104 1 ≤ s , t ≤ n 1 \leq s, t \leq n 1s,tn。且从 s s s 出发一定能到达 t t t 区。

样例输入输出 1 解释

小明的妈妈要从 1 1 1 号点去 3 3 3 号点,最优路线为 1 1 1-> 2 2 2-> 3 3 3

大致思路

最小生成树问题
题目中要求求出从 s 到 t 拥挤度最大值最小(乍一看很二分,事实上二分也可以做)

然而最小生成树也可以实现。

我们正常跑 k r u s k a l kruskal kruskal ,当 s 与 t 第一次连通时即求出了答案。

在找最小边的同时,对ans进行更新,找到加入边权中的最小值即可

AC CODE

#include<bits/stdc++.h>
using namespace std;
const int N=1e6+99;
int n,m,s,t,fa[N];
struct node{
	int u,v,w;
}a[N];
int totans=-0x3f3f3f3f;
int find(int x){
	if(fa[x]==x)return x;
	return fa[x]=find(fa[x]);
}
void merge(int u,int v){
	fa[find(u)]=find(v);
}
bool cmp(node a,node b){
	return a.w<b.w;
}
void kruskal(){
	for(int i=1;i<=n;i++){
		fa[i]=i;
	}
	sort(a+1,a+1+m,cmp);
	for(int i=1;i<=m;i++){
		if(find(a[i].u)!=find(a[i].v)){
			//totans+=a[i].w;
			merge(a[i].u,a[i].v);
			totans=max(totans,a[i].w);
			
		}
		if(find(s)==find(t)){
			cout<<totans;
			break;
		}
	}
}
int main(){
	cin>>n>>m>>s>>t;
	for(int i=1;i<=m;i++){
		cin>>a[i].u>>a[i].v>>a[i].w;
	}
	kruskal();
	return 0;
}

附封面(铃芽之旅 铃芽户缔)

请添加图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值