营救
题目背景
“咚咚咚……”“查水表!”原来是查水表来了,现在哪里找这么热心上门的查表员啊!小明感动得热泪盈眶,开起了门……
题目描述
妈妈下班回家,街坊邻居说小明被一群陌生人强行押上了警车!妈妈丰富的经验告诉她小明被带到了 t t t 区,而自己在 s s s 区。
该市有 m m m 条大道连接 n n n 个区,一条大道将两个区相连接,每个大道有一个拥挤度。小明的妈妈虽然很着急,但是不愿意拥挤的人潮冲乱了她优雅的步伐。所以请你帮她规划一条从 s s s 至 t t t 的路线,使得经过道路的拥挤度最大值最小。
输入格式
第一行有四个用空格隔开的 n n n, m m m, s s s, t t t,其含义见【题目描述】。
接下来 m m m 行,每行三个整数 u , v , w u, v, w u,v,w,表示有一条大道连接区 u u u 和区 v v v,且拥挤度为 w w w。
两个区之间可能存在多条大道。
输出格式
输出一行一个整数,代表最大的拥挤度。
样例 #1
样例输入 #1
3 3 1 3
1 2 2
2 3 1
1 3 3
样例输出 #1
2
提示
数据规模与约定
- 对于 30 % 30\% 30% 的数据,保证 n ≤ 10 n\leq 10 n≤10。
- 对于 60 % 60\% 60% 的数据,保证 n ≤ 100 n\leq 100 n≤100。
- 对于 100 % 100\% 100% 的数据,保证 1 ≤ n ≤ 1 0 4 1 \leq n\leq 10^4 1≤n≤104, 1 ≤ m ≤ 2 × 1 0 4 1 \leq m \leq 2 \times 10^4 1≤m≤2×104, w ≤ 1 0 4 w \leq 10^4 w≤104, 1 ≤ s , t ≤ n 1 \leq s, t \leq n 1≤s,t≤n。且从 s s s 出发一定能到达 t t t 区。
样例输入输出 1 解释
小明的妈妈要从 1 1 1 号点去 3 3 3 号点,最优路线为 1 1 1-> 2 2 2-> 3 3 3。
大致思路
最小生成树问题
题目中要求求出从 s 到 t 拥挤度最大值最小(乍一看很二分,事实上二分也可以做)
然而最小生成树也可以实现。
我们正常跑 k r u s k a l kruskal kruskal ,当 s 与 t 第一次连通时即求出了答案。
在找最小边的同时,对ans进行更新,找到加入边权中的最小值即可
AC CODE
#include<bits/stdc++.h>
using namespace std;
const int N=1e6+99;
int n,m,s,t,fa[N];
struct node{
int u,v,w;
}a[N];
int totans=-0x3f3f3f3f;
int find(int x){
if(fa[x]==x)return x;
return fa[x]=find(fa[x]);
}
void merge(int u,int v){
fa[find(u)]=find(v);
}
bool cmp(node a,node b){
return a.w<b.w;
}
void kruskal(){
for(int i=1;i<=n;i++){
fa[i]=i;
}
sort(a+1,a+1+m,cmp);
for(int i=1;i<=m;i++){
if(find(a[i].u)!=find(a[i].v)){
//totans+=a[i].w;
merge(a[i].u,a[i].v);
totans=max(totans,a[i].w);
}
if(find(s)==find(t)){
cout<<totans;
break;
}
}
}
int main(){
cin>>n>>m>>s>>t;
for(int i=1;i<=m;i++){
cin>>a[i].u>>a[i].v>>a[i].w;
}
kruskal();
return 0;
}