为什么是“深度”学习而不是宽度?

为什么是深度而不是宽度?

先说说我个人的理解,如下图所示,圆圈表示神经元,有两种方式。第一种,只有一层神经层,有8个神经元;第二种方式,有两层神经层,分别有2个和4个神经元。相比之下,第一种更“宽”更“浅”,第二种更“窄”更“深”。对于每个输入,两种方式都可能产生8种结果(第一种:8*1;第二种:2*4),但是第二种方式的神经元总数更少。

因此,在神经元数目相同的情况下,“深度”学习出现的情况会更多,效果也会更好、更全面。
这里写图片描述

多说一句,在操作系统课程中,内存管理中多级页表技术来节省空间也与“深度”这个问题原理相同。

下面这张图是《深度学习入门教程》中看到的,是对上面这个问题的解释,这里与逻辑门类比,与上面的解释本质是一样的。

这里写图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值