大数定理与中心极限定理

一、大数定理

在概率论中,大数定理是由概率的统计定义“频率收敛于概率”引申而来的。

【定理1】
X 1 , X 2 , X 3 , ⋯   , X n , ⋯ X_1, X_2, X_3, \cdots, X_n, \cdots X1,X2,X3,,Xn, 是独立同分布的随机变量,记它们的公共均值为 a a a,又设它们的方差存在并记为 σ 2 \sigma^2 σ2,则对任意给定的 ε > 0 \varepsilon > 0 ε>0,有 lim ⁡ n → ∞ P ( ∣ X n ˉ − a ∣ ≥ ε ) = 0 \lim_{n\rightarrow \infty}P(|\bar{X_n} - a| \geq \varepsilon) = 0 nlimP(Xnˉaε)=0

其中,频率 X n ˉ = ( X 1 + ⋯ + X n ) / n \bar{X_n} = (X_1 + \cdots + X_n) / n Xnˉ=(X1++Xn)/n.

这个式子指出:当 n n n 很大时, X n ˉ \bar{X_n} Xnˉ 接近 a a a

二、中心极限定理

在很一般的情况下,和的极限分布就是正态分布。在概率论上,习惯于把和的分布收敛于正态分布的那一类定理都叫做“中心极限定理”。

【定理2】
X 1 , X 2 , X 3 , ⋯ &ThinSpace; , X n , ⋯ X_1, X_2, X_3, \cdots, X_n, \cdots X1,X2,X3,,Xn, 为独立同分布的随机变量, E ( X i ) = a , Var ( X i ) = σ 2 ( 0 &lt; σ 2 &lt; ∞ ) E(X_i)=a, \text{Var}(X_i)=\sigma^2 (0 &lt; \sigma^2 &lt; \infty) E(Xi)=a,Var(Xi)=σ2(0<σ2<)。则对任何实数 x x x,有 lim ⁡ n → ∞ P ( 1 n σ ( X 1 + ⋯ + X n − n a ) ≤ x ) = Φ ( x ) \lim_{n \rightarrow \infty}P(\frac{1}{\sqrt{n}\sigma}(X_1 + \cdots + X_n - na) \leq x) = \Phi(x) nlimP(n σ1(X1++Xnna)x)=Φ(x)

这里, Φ ( x ) \Phi(x) Φ(x) 是标准正态分布 N ( 0 , 1 ) N(0,1) N(0,1) 的分布函数,即 Φ ( x ) = 1 2 π ∫ − ∞ ∞ e − t 2 / 2 d t \Phi(x) = \frac{1}{\sqrt{2\pi}}\int^\infty_{-\infty}e^{-t^2/2}\text{d}t Φ(x)=2π 1et2/2dt

注意到 X 1 + ⋯ + X n X_1 + \cdots + X_n X1++Xn 有均值 n a na na,方差 n σ 2 n\sigma^2 nσ2,故 ( X 1 + ⋯ + X n − n a ) / n σ (X_1 + \cdots + X_n - na) / \sqrt{n}\sigma (X1++Xnna)/n σ

就是 X 1 + ⋯ + X n X_1 + \cdots + X_n X1++Xn 的标准化,即使其均值变为0、方差变为1,以与 N ( 0 , 1 ) N(0,1) N(0,1) 的均值、方差符合。
这个定理指出,虽然在一般情况下我们很难求出 X 1 + ⋯ + X n X_1 + \cdots + X_n X1++Xn 的分布的确切形式,但是当 n n n 很大时,可以通过 Φ ( x ) \Phi(x) Φ(x) 给出其近似值。

【定理3】
X 1 , X 3 , ⋯ &ThinSpace; , X n , ⋯ X_1, X_3, \cdots, X_n, \cdots X1,X3,,Xn, 独立同分布, X i X_i Xi 的分布是 P ( X i = 1 ) = p ,   P ( X i = 0 ) = 1 − p     ( 0 &lt; p &lt; 1 ) P(X_i=1)=p,\ P(X_i=0)=1-p\ \ \ (0&lt;p&lt;1) P(Xi=1)=p, P(Xi=0)=1p   (0<p<1)

则对任何实数 x x x,有 lim ⁡ n → ∞ P ( 1 n p ( 1 − p ) ( X 1 + ⋯ + X n − n p ) ≤ x ) = Φ ( x ) \lim_{n \rightarrow \infty}P(\frac{1}{\sqrt{np(1-p)}}(X_1 + \cdots + X_n - np) \leq x) = \Phi(x) nlimP(np(1p) 1(X1++Xnnp)x)=Φ(x)

【定理3】是【定理2】的特例,只需注意 E ( X i ) = p , Var ( X i ) = p ( 1 − p ) E(X_i)=p, \text{Var}(X_i)=p(1-p) E(Xi)=p,Var(Xi)=p(1p). 又此处 X 1 + ⋯ + X n X_1 + \cdots + X_n X1++Xn 服从二项分布 B ( n , p ) B(n,p) B(n,p),故【定理3】是用正态分布去逼近二项分布。

【注】本文内容来自《概率论与数理统计》(陈希儒)

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值