第五章 大数定律及中心极限定律

极限定理是概率论的基本理论,在理论研究和应用中起着重要的作用,其中最重要的是称为“大数定律”与“中心极限定理”的一些定理。大数定律是叙述随机变量序列的前一些项的算术平均值在某种条件下收敛到这些项的均值的算术平均值;中心极限定理则是确定在什么条件下,大量随机变量之和的分布逼近于正态分布。本章介绍几个大数定理和中心极限定理。

1 大数定律

第一章曾讲过,大量试验证实,随机事件A的频率fn(A)当重复试验的次数n增大时总呈现出稳定性,稳定在某一个常数的附近。频率的稳定性是概率定义的客观基础。本节我们将对频率的稳定性作出理论的说明。

弱大数定理(辛钦大数定理)设X1,X2,…是相互独立,服从同一分布的随机变量序列,具有数学期望E(Xk)=u (k=1,2,…)。作前n个变量的算术平均
在这里插入图片描述
则对于任意ℇ>0,有
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2 中心极限定理

在客观实际中有许多随机变量,它们是由大量的相互独立的随机因素的综合影响所形成的。而其中每一个别因素在总的影响中所起的作用都是微小的。这种随机变量往往近似地服从正态分布。这种现象就是中心极限定理的客观背景。本节只介绍三个常用的中心极限定理。

定理一(独立同分布的中心极限定理) 设随机变量X1,X2,…,Xn,…相互独立,服从同一分布,且具有数学期望和方差:E(Xk)=u, D(Xk)=σ^2>0 (k=1,2,…),则随机变量之和在这里插入图片描述
的标准化变量:

在这里插入图片描述

的分布函数Fn(x)对于任意x满足:

在这里插入图片描述
这就是说,均值为u,方差为σ^2>0的独立同分布的随机变量X1,X2,…,Xn之和在这里插入图片描述
的标准化变量,当n充分大时,有:
在这里插入图片描述
在一般情况下,很难求出n个随机变量之和在这里插入图片描述的分布函数,(2.2)式表面,当n充分大时,可以通过Φ(x给出其近似的分布。这样,就可以利用正态分布对在这里插入图片描述
作理论分析或作实际计算,其好处是明显的。

将(2.2)式左端改写成
在这里插入图片描述
这样,上述结果可写成:当n充分大时,
在这里插入图片描述
这是独立同分布中心极限定理结果的另一个形式。这就是说,均值为u,方差为σ^2>0的独立同分布的随机变量X1,X2,…,Xn的算术平均在这里插入图片描述,
当n充分大时近似地服从均值为u,方差为σ^2/n的正态分布。这一结果是数理统计中大样本统计推断的基础。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值