NYOJ 311 完全背包(完全背包模型)

完全背包

时间限制: 3500 ms  |  内存限制: 65535 KB
难度: 4
描述

直接说题意,完全背包定义有N种物品和一个容量为V的背包,每种物品都有无限件可用。第i种物品的体积是c,价值是w。求解将哪些物品装入背包可使这些物品的体积总和不超过背包容量,且价值总和最大。本题要求是背包恰好装满背包时,求出最大价值总和是多少。如果不能恰好装满背包,输出NO

输入
第一行: N 表示有多少组测试数据(N<7)。
接下来每组测试数据的第一行有两个整数M,V。 M表示物品种类的数目,V表示背包的总容量。(0<M<=2000,0<V<=50000)
接下来的M行每行有两个整数c,w分别表示每种物品的重量和价值(0<c<100000,0<w<100000)
输出
对应每组测试数据输出结果(如果能恰好装满背包,输出装满背包时背包内物品的最大价值总和。 如果不能恰好装满背包,输出NO)
样例输入
2
1 5
2 2
2 5
2 2
5 1
样例输出
NO
1

//数组初始化为-1,dp[0]=0,开始判断然后dp

#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
using namespace std;

int dp[50000+10]={0};
int main()
{
	int t;
	cin>>t;
	while(t--)
	{
		memset(dp,-1,sizeof(dp));
		int n,m,w,v;
		scanf("%d%d",&n,&m);
		dp[0]=0;
		for(int i=0; i<n; i++)
		{
			scanf("%d%d",&w,&v);
			for(int j=w; j<=m; j++)//本来想j+=w的,想想又觉得不对,因为当之后在取值的时候可以使用前面如物品w=2使用dp[3]时只要dp[1]有值,那dp[3]也可以装下
			{
				if(dp[j-w]!=-1)
				dp[j]=max(dp[j],dp[j-w]+v);
			}
		}
		if(dp[m]!=-1)
			printf("%d\n",dp[m]);
		else
			printf("NO\n");
	}
	return 0;
} //ac
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值