完全背包
时间限制:
3500 ms | 内存限制:
65535 KB
难度:
4
-
描述
-
直接说题意,完全背包定义有N种物品和一个容量为V的背包,每种物品都有无限件可用。第i种物品的体积是c,价值是w。求解将哪些物品装入背包可使这些物品的体积总和不超过背包容量,且价值总和最大。本题要求是背包恰好装满背包时,求出最大价值总和是多少。如果不能恰好装满背包,输出NO
-
输入
-
第一行: N 表示有多少组测试数据(N<7)。
接下来每组测试数据的第一行有两个整数M,V。 M表示物品种类的数目,V表示背包的总容量。(0<M<=2000,0<V<=50000)
接下来的M行每行有两个整数c,w分别表示每种物品的重量和价值(0<c<100000,0<w<100000)
输出
- 对应每组测试数据输出结果(如果能恰好装满背包,输出装满背包时背包内物品的最大价值总和。 如果不能恰好装满背包,输出NO) 样例输入
-
2 1 5 2 2 2 5 2 2 5 1
样例输出
-
NO 1
//数组初始化为-1,dp[0]=0,开始判断然后dp
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
using namespace std;
int dp[50000+10]={0};
int main()
{
int t;
cin>>t;
while(t--)
{
memset(dp,-1,sizeof(dp));
int n,m,w,v;
scanf("%d%d",&n,&m);
dp[0]=0;
for(int i=0; i<n; i++)
{
scanf("%d%d",&w,&v);
for(int j=w; j<=m; j++)//本来想j+=w的,想想又觉得不对,因为当之后在取值的时候可以使用前面如物品w=2使用dp[3]时只要dp[1]有值,那dp[3]也可以装下
{
if(dp[j-w]!=-1)
dp[j]=max(dp[j],dp[j-w]+v);
}
}
if(dp[m]!=-1)
printf("%d\n",dp[m]);
else
printf("NO\n");
}
return 0;
} //ac