极值问题
Description
已知m、n为整数,且满足下列两个条件:
(1)m、n∈1,2,3,……,k
(2)(n^2-mn-m^2)^2=1
对给定的k,求m^2+n^2的最大值
Sample Input
1995
Sample Output
m=987
n=1597
分析:
由条件2:(n^ 2-mn-m^2)^2=1
故而: (m^2 + mn- n^2)^2=1
继续化简:m^2+mn-n^2=(m+n)^2-mn-2n^2
=(m+n)^2-(m+n)n-n^2
即: (n^2-mn-m^2)^2=[(m+n)^2-(m+n)n-n^2]^2
我们观察上述最后的等式,我们可以发现
n->m+n (第一个平方)
m->n,n->m+n(中间的因式)
m->n(第二个平方)
这时我们发现这是我们熟悉的斐波那契数列,这样,这一题的突破口很明显了,m、n都是在K(包括K)之内的最大的两个满足斐波那契数列的数;//这个算法服!
#include<iostream>
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
int main()
{
int k,m1,m2;
while(cin>>k)
{
m1=1,m2=1;
while(m1+m2<k)
{
m2=m1+m2;
m1=m2-m1;
}
printf("%d %d\n",m1,m2);
}
return 0;
}