算法竞赛宝典 递推算法 极值问题

极值问题

Description

已知m、n为整数,且满足下列两个条件: 
(1)m、n∈1,2,3,……,k 
(2)(n^2-mn-m^2)^2=1 
对给定的k,求m^2+n^2的最大值 
Sample Input 
1995 
Sample Output 
m=987 

n=1597

分析:

由条件2:(n^ 2-mn-m^2)^2=1

故而:      (m^2 + mn- n^2)^2=1

继续化简:m^2+mn-n^2=(m+n)^2-mn-2n^2 

                                                =(m+n)^2-(m+n)n-n^2 
即:          (n^2-mn-m^2)^2=[(m+n)^2-(m+n)n-n^2]^2

我们观察上述最后的等式,我们可以发现

n->m+n (第一个平方)

m->n,n->m+n(中间的因式)

m->n(第二个平方)

这时我们发现这是我们熟悉的斐波那契数列,这样,这一题的突破口很明显了,m、n都是在K(包括K)之内的最大的两个满足斐波那契数列的数;

//这个算法服!

#include<iostream>
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
int main()
{
	int k,m1,m2;
	while(cin>>k)
	{
		m1=1,m2=1;
		while(m1+m2<k)
		{
			m2=m1+m2;
			m1=m2-m1;
		}
		printf("%d %d\n",m1,m2);
	}
	return 0;
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值