前缀和的本质

本篇博客将会从贡献的思想认识前缀和.

首先,我们回顾一下一维前缀和和二维前缀和:

//一维
for (int i = 1; i <= n; ++i)
    s[i] = s[i - 1] + a[i];
//二维
for (int i = 1; i <= n; ++i)
    for (int j = 1; j <= m; ++j)
        s[i][j] = s[i - 1][j] + s[i][j - 1] - s[i - 1][j - 1] + a[i];

当然,也可以这么写:

//一维
for (int i = 1; i <= n; ++i)
    s[i] += s[i - 1];
//二维
for (int i = 1; i <= n; ++i)
    for (int j = 1; j <= m; ++j)
        f[i][j] += f[i - 1][j];
for (int i = 1; i <= n; ++i)
    for (int j = 1; j <= m; ++j)
        f[i][j] += f[i][j - 1];

二维前缀和的第一种写法实际上就是容斥原理,不在我们本篇讨论的范围内.

我们主要讲第二种:

我们讲每个f[i][j]初始化为一个值a[i][j],如果我们要求二维前缀和,我们考虑a[i][j]对哪些前缀和产生了贡献.

 答案就是上图中的蓝色部分,我们要使得a(i, j)对蓝色部分造成贡献,可以分成两部分,对列造成贡献.

 然后对于每个列,我们往下推

 问题就转化成了,如何让一个点,对这个点后面的直线产生贡献,答案就是一维的前缀和,直接向想要产生贡献的方向累加即可.

同理,我们想要求左下角方向的"前缀和",我们也可以先向左边累加,然后向下边累加

 同样的,对于更高维的前缀和,我们采取相同的做法.

CF372B Counting Rectangles is Fun

题目传送门

 我们先枚举(i, j, i1, j1),如果这是个全0矩阵,我们Q(i, j, i1, j1)++,然后我们假设f(i, j, i1, j1)为这个矩形内部的全0矩阵的个数,考虑每个子矩阵(i, j, i1, j1)产生的贡献.就是红色部分,我们直接按照这些方向累加即可:

 

#include <bits/stdc++.h>
#define int long long
#define IOS ios::sync_with_stdio(false), cin.tie(0) 
#define ll long long 
// #define double long double
#define ull unsigned long long 
#define PII pair<int, int> 
#define PDI pair<double, int> 
#define PDD pair<double, double> 
#define debug(a) cout << #a << " = " << a << endl 
#define point(n) cout << fixed << setprecision(n)
#define all(x) (x).begin(), (x).end() 
#define mem(x, y) memset((x), (y), sizeof(x)) 
#define lbt(x) (x & (-x)) 
#define SZ(x) ((x).size()) 
#define inf 0x3f3f3f3f 
#define INF 0x3f3f3f3f3f3f3f3f
namespace nqio{const unsigned R = 4e5, W = 4e5; char *a, *b, i[R], o[W], *c = o, *d = o + W, h[40], *p = h, y; bool s; struct q{void r(char &x){x = a == b && (b = (a = i) + fread(i, 1, R, stdin), a == b) ? -1 : *a++;} void f(){fwrite(o, 1, c - o, stdout); c = o;} ~q(){f();}void w(char x){*c = x;if (++c == d) f();} q &operator >>(char &x){do r(x);while (x <= 32); return *this;} q &operator >>(char *x){do r(*x); while (*x <= 32); while (*x > 32) r(*++x); *x = 0; return *this;} template<typename t> q&operator>>(t &x){for (r(y),s = 0; !isdigit(y); r(y)) s |= y == 45;if (s) for (x = 0; isdigit(y); r(y)) x = x * 10 - (y ^ 48); else for (x = 0; isdigit(y); r(y)) x = x * 10 + (y ^ 48); return *this;} q &operator <<(char x){w(x);return *this;}q &operator<< (char *x){while (*x) w(*x++); return *this;}q &operator <<(const char *x){while (*x) w(*x++); return *this;}template<typename t> q &operator<< (t x) {if (!x) w(48); else if (x < 0) for (w(45); x; x /= 10) *p++ = 48 | -(x % 10); else for (; x; x /= 10) *p++ = 48 | x % 10; while (p != h) w(*--p);return *this;}}qio; }using nqio::qio;
using namespace std;
const int N = 1e6 + 10, M = (1 << 21) + 5, MOD = 1e9 + 7;
int n, m, f[M], qp[M] = {1};
void work(int x) {
	for (int j = 0; j < 21; ++j)
		for (int i = 0; i < (1 << 21); ++i)
			if (i >> j & 1)
				f[i] = ((f[i] + f[i ^ (1ll << j)] * x % MOD) % MOD + MOD) % MOD;
}
void solve() {
	qio >> n >> m;
	for (int i = 1; i <= n; ++i) qp[i] = (qp[i - 1] << 1ll) % MOD;
	for (int i = 1; i <= n; ++i) {
		int k, st = 0;
		qio >> k;
		for (int j = 1, x; j <= k; ++j) qio >> x, --x, st |= (1ll << x);
		++f[st];
	}
	work(1);
	for (int i = 0; i < (1 << 21); ++i) f[i] = (qp[f[i]] - 1) % MOD;
	work(-1);
	qio << f[(1 << m) - 1] << '\n';
}
signed main()  {
	// IOS;
	int T = 1;
	// qio >> T;
	while (T--) solve();
}

除此之外,前缀和还可以用来解决偏序问题,不过不在此篇讨论范围内.

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
前缀和和差分是一类常用的算法,它们常常被用来优化一些区间操作的问题,如求区间和、区间最大值/最小值等等。下面我们将分别介绍前缀和和差分的定义、用法和常见问题。 ## 前缀前缀和,顾名思义,就是把前面所有数的和都求出来,用一个数组存起来,以便之后的查询。 ### 定义 给定一个长度为 $n$ 的序列 $a$,令 $s_i = \sum_{j=1}^{i}a_j$,则 $s$ 称为序列 $a$ 的前缀和数组。 ### 用法 前缀和的主要作用是用 $O(1)$ 的时间复杂度求出一个区间 $[l,r]$ 的和,即 $s_r - s_{l-1}$。这是因为 $s_r$ 存储了序列从 $1$ 到 $r$ 的和,而 $s_{l-1}$ 存储了序列从 $1$ 到 $l-1$ 的和,因此区间 $[l,r]$ 的和可以通过两个前缀和相减计算得出。 前缀和的时间复杂度为 $O(n)$,因为需要遍历一遍序列求出前缀和数组。但是,如果有多个查询需要求区间和,那么使用前缀和可以将每次查询的时间复杂度降低到 $O(1)$。 ### 代码实现 下面是使用前缀和求区间和的代码实现: ```cpp vector<int> a; // 原序列 vector<int> s(a.size() + 1); // 前缀和数组 // 计算前缀和 for (int i = 1; i <= a.size(); i++) { s[i] = s[i - 1] + a[i - 1]; } // 查询区间 [l, r] 的和 int sum = s[r] - s[l - 1]; ``` ## 差分 差分和前缀和相反,它主要用来对区间进行修改。我们可以利用差分数组进行区间修改,并最终得到修改后的序列。 ### 定义 给定一个长度为 $n$ 的序列 $a$,令 $d_i = a_i - a_{i-1}$($d_1 = a_1$),则 $d$ 称为序列 $a$ 的差分数组。 ### 用法 差分的主要作用是对区间进行修改。假设我们需要将区间 $[l,r]$ 的数加上 $k$,我们可以将差分数组的 $d_l$ 加上 $k$,将 $d_{r+1}$ 减去 $k$。这样,对差分数组求前缀和,就可以得到修改后的序列。 具体来说,我们可以按照以下步骤进行区间修改: 1. 对差分数组的 $d_l$ 加上 $k$; 2. 对差分数组的 $d_{r+1}$ 减去 $k$; 3. 对差分数组求前缀和,得到修改后的序列。 差分的时间复杂度为 $O(n)$,因为需要遍历一遍序列求出差分数组。但是,如果有多次区间修改需要进行,那么使用差分可以将每次修改的时间复杂度降低到 $O(1)$。 ### 代码实现 下面是使用差分进行区间修改的代码实现: ```cpp vector<int> a; // 原序列 vector<int> d(a.size() + 1); // 差分数组 // 计算差分数组 for (int i = 1; i < a.size(); i++) { d[i] = a[i] - a[i - 1]; } // 修改区间 [l, r],将数加上 k d[l] += k; d[r + 1] -= k; // 对差分数组求前缀和,得到修改后的序列 for (int i = 1; i < d.size(); i++) { a[i] = a[i - 1] + d[i]; } ``` ## 常见问题 ### 1. 差分数组的长度是多少? 差分数组的长度应该比原序列长度多 1,因为 $d_1 = a_1$。 ### 2. 什么情况下使用前缀和?什么情况下使用差分? 如果需要进行多次区间查询,那么使用前缀和可以将每次查询的时间复杂度降低到 $O(1)$;如果需要进行多次区间修改,那么使用差分可以将每次修改的时间复杂度降低到 $O(1)$。 ### 3. 前缀和和差分的本质区别是什么? 前缀和和差分都是用来优化区间操作的算法,它们的本质区别在于: - 前缀和是通过预处理前缀和数组来优化区间查询; - 差分是通过预处理差分数组来优化区间修改。 ### 4. 前缀和和差分能否同时使用? 当然可以。如果需要同时进行区间查询和修改,我们可以先使用差分数组对区间进行修改,然后再对差分数组求前缀和,得到修改后的序列。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值