怎么安装Pytorch

Pytorch的GPU版本安装

为什么要安装GPU版本的Pytorch?

因为如果你的电脑有GPU,那么可以利用GPU训练的更快,所以推荐下GPU版本而不是CPU。

网址:Start Locally | PyTorch

首先,打开Pytorch的网址如下,根据自身情况选择合适的CUDA版本。
在这里插入图片描述
怎么查看当前电脑的CUDA版本呢?
在这里插入图片描述

nvcc --version

这里我的cuda版本是11.8。

如果CUDA版本太低,或者不合适,需要重新下载,电脑上可以下载多个CUDA版本,但是只能使用其中一个,哪一个版本的路径被写到了高级变量设置,就说明是哪个版本。

CUDA官网下载链接:CUDA Toolkit Archive | NVIDIA Developer,这里我下载了两个版本分别11.6和11.8
在这里插入图片描述

需要在高级系统设置Path中配置,这里我配置的是11.8:
在这里插入图片描述

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8\bin
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8\libnvvp

配置的是什么版本,使用的就是什么版本。

可以复制后面的链接打开网页,如下图的红框。由于我是CUDA11.8,所以在下面Compute Platform选择的是CUDA11.8
在这里插入图片描述
打开后,选择这个三个下载
在这里插入图片描述

这三个为Pytorch必备的三个库,我们必须全部下载,并且找到合适的版本。那么怎么看这个库应该用什么版本呢?

打开如下网页:
在这里插入图片描述在这里插入图片描述

以torch为例,介绍如何下载,其他的torchvision、torchaudio也是一样的方法。

点击打开
在这里插入图片描述
在这里插入图片描述

找到以后,点击下载,我们会得到一个whl文件。torchvision、torchaudio也是这样,所以一共得到3个whl文件,我们需要把whl文件下载到我们需要的环境中。

首先,在三个whl文件的地址中,输入cmd
在这里插入图片描述
这样,黑窗口的路径与whl文件的路径在一起,

activate 你的环境名

进入虚拟环境,下载这三个whl文件,由于黑窗口的路径与whl文件的路径在一起,所以我们不用指定路径

pip install xxxx.whl

最后可以测试下是否下载成功

import torch
print(torch.__version__)  # 检查版本,查看下载的版本是否对应
print(torch.cuda.is_available())  # 应返回 True
print(torch.cuda.device_count())  # 应返回 GPU 数,如果是0要么是电脑没有显卡,要么是下载的cpu版本

也可以用cmd看

activate 你的环境名 # 激活当前环境
pip list # 展示当前环境下载的库

在这里插入图片描述

格式为 库名 + 版本号。其中cu118代表的是GPU版本的Pytorch,支持的是CUDA11.8,如果你下载的没有cuxxx,说明你下载的是CPU而不是GPU版本。

### PyTorch 安装教程 #### 创建并激活 Conda 虚拟环境 为了确保最佳兼容性和隔离开发环境,在安装 PyTorch 前建议先通过 Anaconda 创建一个新的 Python 环境。这可以通过命令行工具完成: ```bash conda create --name pytorch_env python=3.9 conda activate pytorch_env ``` #### 获取适用于系统的 PyTorch 配置指令 访问官方推荐页面来获取适合特定硬件配置(CPU/GPU)、操作系统以及 CUDA 版本的安装命令[^1]。 对于大多数用户而言,默认选项通常是最优选择;但对于拥有 NVIDIA 显卡并希望利用 GPU 加速计算能力的情况,则应特别注意匹配正确的 CUDA/ cuDNN 版本。 #### 使用 conda 安装 PyTorch 及其依赖项 一旦决定了具体的安装参数,就可以执行相应的 `conda install` 或者 `pip install` 指令来进行软件包部署。这里以 conda 方式为例说明如何一次性安装 PyTorch、torchvision 和 torchaudio 这三个核心组件: ```bash conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch ``` 请注意上述命令中的 `cudatoolkit=11.3` 参数需依据个人计算机上的实际 CUDA 版本来调整。 #### 验证 PyTorch 是否正确安装 最后一步是在 Python 解释器内部运行简单的测试脚本来确认 PyTorch 已经被成功加载并且能够识别到可用设备(如GPU)。可以尝试如下代码片段进行验证: ```python import torch print(torch.__version__) print(torch.cuda.is_available()) ``` 如果一切正常的话,这段程序应该会打印出当前使用的 PyTorch 版本号,并返回 True 表明存在可工作的 CUDA 设备支持[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值