Pytorch的GPU版本安装
为什么要安装GPU版本的Pytorch?
因为如果你的电脑有GPU,那么可以利用GPU训练的更快,所以推荐下GPU版本而不是CPU。
首先,打开Pytorch的网址如下,根据自身情况选择合适的CUDA版本。
怎么查看当前电脑的CUDA版本呢?
nvcc --version
这里我的cuda版本是11.8。
如果CUDA版本太低,或者不合适,需要重新下载,电脑上可以下载多个CUDA版本,但是只能使用其中一个,哪一个版本的路径被写到了高级变量设置,就说明是哪个版本。
CUDA官网下载链接:CUDA Toolkit Archive | NVIDIA Developer,这里我下载了两个版本分别11.6和11.8
需要在高级系统设置Path中配置,这里我配置的是11.8:
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8\bin
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8\libnvvp
配置的是什么版本,使用的就是什么版本。
可以复制后面的链接打开网页,如下图的红框。由于我是CUDA11.8,所以在下面Compute Platform选择的是CUDA11.8
打开后,选择这个三个下载
这三个为Pytorch必备的三个库,我们必须全部下载,并且找到合适的版本。那么怎么看这个库应该用什么版本呢?
打开如下网页:
以torch为例,介绍如何下载,其他的torchvision、torchaudio也是一样的方法。
点击打开
找到以后,点击下载,我们会得到一个whl文件。torchvision、torchaudio也是这样,所以一共得到3个whl文件,我们需要把whl文件下载到我们需要的环境中。
首先,在三个whl文件的地址中,输入cmd
这样,黑窗口的路径与whl文件的路径在一起,
activate 你的环境名
进入虚拟环境,下载这三个whl文件,由于黑窗口的路径与whl文件的路径在一起,所以我们不用指定路径
pip install xxxx.whl
最后可以测试下是否下载成功
import torch
print(torch.__version__) # 检查版本,查看下载的版本是否对应
print(torch.cuda.is_available()) # 应返回 True
print(torch.cuda.device_count()) # 应返回 GPU 数,如果是0要么是电脑没有显卡,要么是下载的cpu版本
也可以用cmd看
activate 你的环境名 # 激活当前环境
pip list # 展示当前环境下载的库
格式为 库名 + 版本号。其中cu118代表的是GPU版本的Pytorch,支持的是CUDA11.8,如果你下载的没有cuxxx,说明你下载的是CPU而不是GPU版本。