大二下:概率论与数理统计复习 导航页:https://blog.csdn.net/COCO56/article/details/100152856
1.
设二维离散型随机向量(X,Y)的分布律为:
若X和Y相互独立。
(
1
)
填
写
上
表
空
白
部
分
;
(1)填写上表空白部分;
(1)填写上表空白部分;
(
2
)
求
U
=
m
a
x
{
X
,
Y
}
的
分
布
律
;
(2)求U=max\{X,Y\}的分布律;
(2)求U=max{X,Y}的分布律;
(
3
)
求
P
(
X
<
Y
)
.
(3)求P(X<Y).
(3)求P(X<Y).
X Y | 201206 |
数据1 | 数据2 |
解
:
解:
解:
(
1
)
:
P
i
j
=
P
i
⋅
P
j
(1):P_{ij}=P_i\cdot P_j
(1):Pij=Pi⋅Pj
2.
已知二维连续性随机变量(X,Y)的联合分布律及边缘分布律满足下表:
(1)将上表空白处填写完全;
(2)判断X,Y是否独立?说明理由
(3)写出U=X+Y,V=max(X,Y),W=min(X,Y)的分布律
3.
进
行
打
靶
,
设
弹
着
点
A
(
X
,
Y
)
的
坐
标
相
互
独
立
,
但
都
服
从
N
(
0
,
1
)
分
布
,
规
定
点
A
落
在
区
域
D
1
=
{
(
x
,
y
)
∣
x
2
+
y
2
≤
1
}
得
2
分
;
点
A
落
在
区
域
D
2
=
{
(
x
,
y
)
∣
1
<
x
2
+
y
2
≤
4
}
得
1
分
;
点
A
落
在
区
域
D
3
=
{
(
x
,
y
)
∣
x
2
+
y
2
>
4
}
得
0
分
;
进行打靶,设弹着点A(X,Y)的坐标相互独立,但都服从N(0,1)分布,规定点A落在区域D_1=\{(x,y)|x^2+y^2\le1\}得2分;点A落在区域D_2=\{(x,y)|1<x^2+y^2\le4\}得1分;点A落在区域D_3=\{(x,y)|x^2+y^2>4\}得0分;
进行打靶,设弹着点A(X,Y)的坐标相互独立,但都服从N(0,1)分布,规定点A落在区域D1={(x,y)∣x2+y2≤1}得2分;点A落在区域D2={(x,y)∣1<x2+y2≤4}得1分;点A落在区域D3={(x,y)∣x2+y2>4}得0分;
以
z
记
打
靶
的
得
分
,
(
1
)
写
出
(
X
,
Y
)
的
联
合
概
率
密
度
;
(
2
)
求
Z
的
分
布
律
以z记打靶的得分,(1)写出(X,Y)的联合概率密度;(2)求Z的分布律
以z记打靶的得分,(1)写出(X,Y)的联合概率密度;(2)求Z的分布律
4.
设二维随机变量(X,Y)的联合分布密度为:
f
(
x
,
y
)
=
{
k
e
−
y
3
,
0
<
x
<
3
,
y
>
0
0
,
其
他
f(x,y)=\left\{ \begin{aligned} &ke^{-\frac{y}{3}},&0<x<3,y>0\\ &0,&其他 \end{aligned} \right.
f(x,y)={ke−3y,0,0<x<3,y>0其他
(
1
)
求
参
数
k
的
值
;
(1)求参数k的值;
(1)求参数k的值;
(
2
)
判
别
随
机
变
量
X
,
Y
是
否
相
互
独
立
;
(2)判别随机变量X,Y是否相互独立;
(2)判别随机变量X,Y是否相互独立;
(
3
)
求
概
率
P
(
Y
≤
X
)
;
(3)求概率P(Y\le X);
(3)求概率P(Y≤X);
5.
设 二 维 随 机 变 量 ( X , Y ) 的 概 率 密 度 函 数 为 f ( x , y ) = { c x 2 0 < x < 3 , y > 0 0 , 其 他 设二维随机变量(X,Y)的概率密度函数为f(x,y)=\left\{ \begin{aligned} &cx^2&0<x<3,y>0\\ &0,&其他 \end{aligned} \right. 设二维随机变量(X,Y)的概率密度函数为f(x,y)={cx20,0<x<3,y>0其他
6.
已
知
(
X
,
Y
)
的
联
合
密
度
为
f
(
x
,
y
)
=
{
x
+
y
,
0
<
x
<
1
,
0
<
y
<
1
0
,
其
他
已知(X,Y)的联合密度为f(x,y)=\left\{ \begin{aligned} &x+y,&0<x<1,0<y<1\\ &0,&其他 \end{aligned} \right.
已知(X,Y)的联合密度为f(x,y)={x+y,0,0<x<1,0<y<1其他
求
(
1
)
P
(
Y
≥
X
2
)
;
(
2
)
Z
=
X
+
Y
的
概
率
密
度
函
数
.
求(1)P(Y\ge X^2);\qquad(2)Z=X+Y的概率密度函数.
求(1)P(Y≥X2);(2)Z=X+Y的概率密度函数.