大二下:概率论与数理统计复习 3.二维随机变量及其分布之实例演战

28 篇文章 29 订阅
本文提供了大二下学期概率论与数理统计课程的复习导航,涵盖二维随机向量的分布律、边缘概率密度函数、独立性判断、联合分布及条件概率等关键知识点。通过具体例题解析,帮助学生理解和掌握概率论与数理统计的基本概念和解题技巧。
摘要由CSDN通过智能技术生成

大二下:概率论与数理统计复习 导航页:https://blog.csdn.net/COCO56/article/details/100152856

1.

设二维离散型随机向量(X,Y)的分布律为:
在这里插入图片描述
若X和Y相互独立。
( 1 ) 填 写 上 表 空 白 部 分 ; (1)填写上表空白部分; (1);
( 2 ) 求 U = m a x { X , Y } 的 分 布 律 ; (2)求U=max\{X,Y\}的分布律; (2)U=max{X,Y};
( 3 ) 求 P ( X < Y ) . (3)求P(X<Y). (3)P(X<Y).

X Y 201206
数据1数据2

解 : 解:
( 1 ) : P i j = P i ⋅ P j (1):P_{ij}=P_i\cdot P_j (1)Pij=PiPj

2.

已知二维连续性随机变量(X,Y)的联合分布律及边缘分布律满足下表:
在这里插入图片描述
(1)将上表空白处填写完全;
(2)判断X,Y是否独立?说明理由
(3)写出U=X+Y,V=max(X,Y),W=min(X,Y)的分布律

3.

进 行 打 靶 , 设 弹 着 点 A ( X , Y ) 的 坐 标 相 互 独 立 , 但 都 服 从 N ( 0 , 1 ) 分 布 , 规 定 点 A 落 在 区 域 D 1 = { ( x , y ) ∣ x 2 + y 2 ≤ 1 } 得 2 分 ; 点 A 落 在 区 域 D 2 = { ( x , y ) ∣ 1 < x 2 + y 2 ≤ 4 } 得 1 分 ; 点 A 落 在 区 域 D 3 = { ( x , y ) ∣ x 2 + y 2 > 4 } 得 0 分 ; 进行打靶,设弹着点A(X,Y)的坐标相互独立,但都服从N(0,1)分布,规定点A落在区域D_1=\{(x,y)|x^2+y^2\le1\}得2分;点A落在区域D_2=\{(x,y)|1<x^2+y^2\le4\}得1分;点A落在区域D_3=\{(x,y)|x^2+y^2>4\}得0分; A(X,Y)N(0,1)AD1={(x,y)x2+y21}2AD2={(x,y)1<x2+y24}1AD3={(x,y)x2+y2>4}0
以 z 记 打 靶 的 得 分 , ( 1 ) 写 出 ( X , Y ) 的 联 合 概 率 密 度 ; ( 2 ) 求 Z 的 分 布 律 以z记打靶的得分,(1)写出(X,Y)的联合概率密度;(2)求Z的分布律 z(1)(X,Y)(2)Z

4.

设二维随机变量(X,Y)的联合分布密度为:
f ( x , y ) = { k e − y 3 , 0 < x < 3 , y > 0 0 , 其 他 f(x,y)=\left\{ \begin{aligned} &ke^{-\frac{y}{3}},&0<x<3,y>0\\ &0,&其他 \end{aligned} \right. f(x,y)={ke3y,0,0<x<3,y>0
( 1 ) 求 参 数 k 的 值 ; (1)求参数k的值; (1)k;
( 2 ) 判 别 随 机 变 量 X , Y 是 否 相 互 独 立 ; (2)判别随机变量X,Y是否相互独立; (2)X,Y;
( 3 ) 求 概 率 P ( Y ≤ X ) ; (3)求概率P(Y\le X); (3)P(YX);

5.

设 二 维 随 机 变 量 ( X , Y ) 的 概 率 密 度 函 数 为 f ( x , y ) = { c x 2 0 < x < 3 , y > 0 0 , 其 他 设二维随机变量(X,Y)的概率密度函数为f(x,y)=\left\{ \begin{aligned} &cx^2&0<x<3,y>0\\ &0,&其他 \end{aligned} \right. (X,Y)f(x,y)={cx20,0<x<3,y>0

6.

已 知 ( X , Y ) 的 联 合 密 度 为 f ( x , y ) = { x + y , 0 < x < 1 , 0 < y < 1 0 , 其 他 已知(X,Y)的联合密度为f(x,y)=\left\{ \begin{aligned} &x+y,&0<x<1,0<y<1\\ &0,&其他 \end{aligned} \right. (X,Y)f(x,y)={x+y,0,0<x<1,0<y<1
求 ( 1 ) P ( Y ≥ X 2 ) ; ( 2 ) Z = X + Y 的 概 率 密 度 函 数 . 求(1)P(Y\ge X^2);\qquad(2)Z=X+Y的概率密度函数. (1)P(YX2);(2)Z=X+Y.

7. 已 知 二 维 随 机 向 量 的 概 率 密 度 函 数 , 求 边 缘 概 率 密 度 函 数 已知二维随机向量的概率密度函数,求边缘概率密度函数

在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

COCO56(徐可可)

建议微信红包:xucoco56

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值