第三章 多维随机变量及其分布 3.1 二维随机变量

3.1 二维随机变量

二维随机变量及其分布函数

上一章里我们都是用一个随机变量 X X X来表述概率的。但是在现实生活里影响事情发生概率的随机变量通常不止一个,所以我们在这一章中引入多维随机变量。这里先从最简单的二维随机变量开始。

在这里插入图片描述
这个定义是通用的,无论是离散型随机变量还是连续型随机变量都适用。

在这里插入图片描述
用图形解释就是在这个阴影区域所对应 z z z轴的值就是 F ( x , y ) F(x,y) F(x,y)
这个三维的坐标系不好画,你可以想象一下:在遥远的 ( + ∞ , + ∞ , 1 ) (+\infty,+\infty,1) (+,+,1)处是山顶(山顶可能是平的也可能是尖的),山顶上的冰雪融化成水向 ( − ∞ , − ∞ , 0 ) (-\infty,-\infty,0) (,,0)铺天盖地的流下来(一路上可能是下坡也可能是平坦的)。

在这里插入图片描述
求紫色部分的概率我们可以用几何概型轻松解决。

性质:
在这里插入图片描述
在这里插入图片描述

二维离散型随机变量

定义:
在这里插入图片描述
二维离散型随机变量的分布律可以这样表示:
在这里插入图片描述
例1:
在这里插入图片描述
在这里插入图片描述
离散型的比较简单,分布律就从原来的一维表格变成二维的表格。

二维连续型随机变量

在这里插入图片描述
这个就是从原来对密度函数的一重积分变成二重积分。

在这里插入图片描述
例2:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
小结:
在这里插入图片描述

已标记关键词 清除标记
内容简介: 本书包括了线性代数与概率论两篇.线性代数部分的主要内容有:n阶行列式,矩阵,向量与向量组,线性方程组,矩阵的特征值、特征向量与n阶矩阵的对角化,次型等.概率论部分的主要内容有:随机事件及其概率,一维随机变量及其分布随机变量及其分布随机变量的数字特征等. 本书可作为函授、远程等成人业余高等教育(工科)的教学用书,也可作为工科院校工程数学的参考用书. 目录: 第一篇 线性代数   第1 行列式    1.1 预备知识     1.1.1 排列及其逆序数     1.1.2 数域的基本概念    1.2 n阶行列式的定义     1.2.1 、三阶行列式     1.2.2 n阶行列式的定义    1.3 行列式的性质     1.3.1 行列式的另外表示及行列式的转置     1.3.2 行列式的性质    1.4 行列式按一行(列)展开     1.4.1 余子式、代数余子式     1.4.2 行列式按一行(列)展开     1.5 克莱姆法则    小结    复习题一   第2 矩阵    2.1 矩阵的定义和运算     2.1.1 矩阵的定义     2.1.2 矩阵的运算    2.2 逆矩阵     2.2.1 逆矩阵的定义     2.2.2 矩阵可逆的条件及伴随矩阵法求逆矩阵     2.2.3 逆矩阵的性质    2.3 矩阵的分块     2.3.1 分块矩阵的概念     2.3.2 矩阵分块原则     2.3.3 准对角形矩阵   2.4 矩阵初等变换    2.4.1 矩阵初等变换与矩阵等价的概念     2.4.2 阶梯形矩阵     2.4.3 初等矩阵     2.4.4 初等矩阵与矩阵初等变换的关系     2.4.5 初等变换法求逆矩阵    2.5 矩阵的秩     2.5.1 矩阵的r阶子式     2.5.2 矩阵秩的定义及求法    小结    复习题   第3 n维向量    3.1 n维向量及其运算     3.1.1 n维向量的概念     3.1.2 向量的线性运算    3.2 向量组的线性相关性     3.2.1 向量组的线性组合     3.2.2 向量组的线性相关与线性无关    3.3 向量组的秩     3.3.1 向量组之间的等价关系     3.3.2 向量组秩的概念     3.3.3 向量组秩的求法    3.4 正交向量组与正交矩阵     3.4.1 向量内积的概念与性质     3.4.2 向量的模     3.4.3 正交向量组     3.4.4 正交矩阵    小结    复习题三   第4 线性方程组    4.1 线性方程组的初等变换    4.2 线性方程组有解的判定     4.2.1 线性方程组的系数矩阵和增广矩阵     4.2.2 线性方程组有解的判定     4.2.3 齐次线性方程组有非零解的判定    4.3 线性方程组解的结构     4.3.1 齐次线性方程组解的构成     4.3.2 非齐次线性方程组解的构成    小结    复习题四   第5 方阵的对角化与次型    5.1 特征值与特征向量     5.1.1 特征值与特征向量的概念     5.1.2 特征值与特征向量的性质     5.1.3 求特征值与特征向量的方法    5.2 相似矩阵     5.2.1 矩阵相似的概念     5.2.2 相似矩阵的性质    5.3 方阵可对角化的条件     5.3.1 方阵相似于对角形矩阵的充分必要条件(ⅰ)     5.3.2 方阵相似于对角形矩阵的充分条件     5.3.3 方阵相似于对角形矩阵的充分必要条件(ⅱ)    5.4 实对称矩阵的对角化     5.4.1 对称矩阵     5.4.2 实对称矩阵及其特性     5.4.3 用正交矩阵化实对称矩阵为对角形矩阵    5.5 次型     5.5.1 次型及矩阵表示     5.5.2 变量组间的线性变换     5.5.3 次型的标准形     5.5.4 次型的规范形     5.5.5 正定次型    小结    复习题五  第篇 概率论   第6 随机事件及其概率    6.1 随机事件及其运算     6.1.1 几个基本概念     6.1.2 事件间的关系与运算     6.1.3 事件间的运算规律    6.2 事件的概率及其性质     6.2.1 古典概型     6.2.2 概率的统计定义     6.2.3 概率的公理化定义     6.2.4 概率的性质    6.3 条件概率     6.3.1 条件概率     6.3.2 关于条件概率的三个重要公式    6.4 独立性     6.4.1 事件的独立性     6.4.2 独立重复试验概型    小结    复习题六   第7 随机变量及其分布    7.1 随机变量    7.2 离散型随机变量及其分布     7.2.1 分布律及其性质     7.2.2 几个常用离散型概率分布    7.3 连续型随机变量及其分布     7.3.1 概率密度函数及其性质     7.3.2 几种常用分布    7.4 分布函数及其性质     7.4.1 分布函数的定义     7.4.2 分布函数的性质    7.5 正态分布     7.5.1 正态分布的密度函数     7.5.2 正态分布分布函数     7.5.3 正态分布的计算    7.6 随机变量函数的分布     7.6.1 离散型随机变量函数的分布     7.6.2 连续型随机变量函数的分布    7.7 随机变量     7.7.1 多维随机变量的概念     7.7.2 随机变量分布函数     7.7.3 维离散型随机变量     7.7.4 维连续型随机变量    小结    复习题七   第8 随机变量的数字特征    8.1 数学期望     8.1.1 离散型随机变量的数学期望     8.1.2 连续型随机变量的数学期望     8.1.3 随机变量函数的数学期望     8.1.4 数学期望的性质    8.2 方差与矩     8.2.1 方差的定义     8.2.2 方差的性质     8.2.3 矩    8.3 协方差与相关系数     8.3.1 随机变量的数学期望和方差的概念     8.3.2 协方差     8.3.3 相关系数    小结    复习题八  附录1 标准正态分布函数表  附录2 泊松分布表(1)  附录3 泊松分布表(2)  附录4 排列组合简介  习题答案 
相关推荐
(1)概率分布函数的性质 ① 是x的单调非减函数,对于 ,有 ② 非负, ③随机变量在 区间内的概率为 ④ 右连续,即 离散随机变量的概率分布函数的表达式为: (2)概率密度函数的性质 ① ,概率密度函数非负 ②概率密度函数在整个取值区间上的积分为1 ③概率密度函数在 区间积分,给出了该区间的取值概率 离散随机变量的概率密度函数为: (3)多维随机变量概率分布函数和概率密度函数 (4)随机变量的数字特征 ①数学期望: ②方差: ③相关矩 ④协方差 课后第1题 (5)统计独立与不相关 ①随机变量X和Y统计独立的充要条件是: ②随机变量X与Y不相关的充要条件是 ③随机变量X和Y正交 课后2.15题 (6)随机变量的函数变换 ①已知X的概率密度函数,求Y的概率密度函数 ②维变换 1,设随机变量 ,且相互独立, ,求随机变量的联合概率密度。 2,已知随机实验X的分布律为 X 1 2 3 P 0.2 0.5 0.3 求X的概率密度和分布函数,并给出图形。 P18页,例题1.1.8 随机过程和随机序列 (1)定义 设随机实验的样本空间 ,对于空间的每一个样本 ,总有一个时间函数 与之对应( ),对于空间的所有样本 ,可有一族时间函数 与其对应,这族时间函数称为随机过程。 在任意时刻 ,随机过程 都是一维随机变量。 (2)概率分布 (3)随机过程的数字特征 ①数学期望 ②方差 ③自相关函数 ④方差 ⑤互相关函数 随机过程 如图题所示:该过程仅由三个样本函数组成,而且每个样本函数均等概率发生。试求:(1) , , (2) , , ; 并画出相应的图形。 (4)平稳随机随机过程 ①严平稳 ②宽平稳 (5)各态历经过程 课后2.6,2.7 (6)自相关函数性质 ①实平稳过程 的自相关函数是偶函数 ② ③非周期平稳过程 的自相关函数满足 (7)功率谱密度 已知随机信号 的功率谱 ,求其自相关函数与均方值。 (8)高斯过程和白噪声 ①随机过程的任意n维随机变量,服从高斯分布,则 就是高斯过程。 宽平稳高斯过程一定是严平稳的 ②若平稳高斯过程在任意两个时刻是不相关的,那么一定是互相独立的。 ③白噪声 三 系统对随机信号的响应 (1)系统的输出响应 系统输出的数学期望 系统输出的自相关函数 系统输出的平均功率 系统输入和输出的互相关函数 (2)系统输出的功率谱密度 课后3.1 (3)等效噪声带宽 等效的原则:保证平均功率 ,把输出功率谱密度等效成在一定带宽内为均匀的功率谱密度。若等效的功率谱密度的高度为 ,那么这个带宽就定义为等效噪声带宽。 掌握等效噪声带宽的计算方法 四 窄带随机过程 (1)希尔伯特变换 正变换 反变换: (2)希尔伯特的性质 ① 的希尔伯特变换为 ②平稳随机过程 的希尔伯特变换 的统计自相关函数和自相关函数 相等。 ③平稳随机过程 与其希尔伯特变换 的统计互相 关函数 等于 的统计自相关函数的希尔伯特变换。 ④ (3)窄带随机过程 , 是窄带过成的包络, 是窄带过程的相位,如果一个随机过程的功率谱是集中在以 为中心频率的有限带 内,并满足 ,则称为窄带随机过程。 (4)窄带高斯过程 如果窄带平稳高斯过程 的数学期望为零,方差为 ,则 则 都可看做 的线性变换,且它们的数学期望为零,方差为 ,因此 皆为高斯过程。根据函数的变换关系,可求得包络 和相位 的分布情况。 窄带高斯过程的包络服从瑞利分布, 窄带高斯过程的相位服从均匀分布
©️2020 CSDN 皮肤主题: 创作都市 设计师:CSDN官方博客 返回首页