教材:《离散数学》第2版 屈婉玲 耿素云 张立昂 高等教育出版社
源文档高清截图在最后
14.4 图的矩阵表示
1、图可以用集合来定义,但多用图形表示,还可以用矩阵来表示。用矩阵表示图便于用代数方法研究图的性质。图可以用关联矩阵、邻接矩阵或可达矩阵来表示。
2、设无向图G(V, E),V = {v1,v2,……,vn},E = {e1,e2,……,em}。则可构造G的关联矩阵M(G) = {mi, j}n×m。mi, j代表顶点vi和边ej的关联次数。
不难发现,无向图的关联矩阵M(G)的性质有:
(1)每列元素之和均为2。这是因为每条边恰好关联两个顶点(环关联一个顶点2次)。
(2)每行元素之和为对应顶点的度数。
(3) 。这正是握手定理的内容。
(4)第j列与第k列相同当且仅当边ej与ek是平行边(重边)。
(5)某行元素之和 为0当且仅当点vi是孤立点。
3、设有向无环图D(V, E),V = {v1,v2,……,vn},E = {e1,e2,……&