【梳理】离散数学 第14章 图的基本概念 14.4 图的矩阵表示 14.5 图的运算

本文详细介绍了离散数学中图的矩阵表示,包括无向图的关联矩阵、有向无环图的关联矩阵和有向图的邻接矩阵,以及这些矩阵的性质。此外,还阐述了图的运算,如并图、差图、交图和环和,并给出了相关性质和证明。
摘要由CSDN通过智能技术生成

教材:《离散数学》第2版 屈婉玲 耿素云 张立昂 高等教育出版社
源文档高清截图在最后

14.4 图的矩阵表示

1、图可以用集合来定义,但多用图形表示,还可以用矩阵来表示。用矩阵表示图便于用代数方法研究图的性质。图可以用关联矩阵、邻接矩阵或可达矩阵来表示。

2、设无向图G(V, E),V = {v1,v2,……,vn},E = {e1,e2,……,em}。则可构造G的关联矩阵M(G) = {mi, j}n×m。mi, j代表顶点vi和边ej的关联次数。
不难发现,无向图的关联矩阵M(G)的性质有:
(1)每列元素之和均为2。这是因为每条边恰好关联两个顶点(环关联一个顶点2次)。
(2)每行元素之和为对应顶点的度数。
(3)在这里插入图片描述 。这正是握手定理的内容。
(4)第j列与第k列相同当且仅当边ej与ek是平行边(重边)。
(5)某行元素之和 在这里插入图片描述为0当且仅当点vi是孤立点。

3、设有向无环图D(V, E),V = {v1,v2,……,vn},E = {e1,e2,……&

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值