【梳理】离散数学 第16章 树 16.1 无向树及其性质 16.2 生成树 16.3 根树及其应用

本文详细介绍了离散数学中的树相关概念,包括无向树的性质,如何判断无向图是否为树,生成树的定义与特性,以及根树的定义、分类和应用。通过证明和例子阐述了树的各种等价条件,如唯一路径、无回路、边数与顶点数的关系等。此外,还讨论了树的割集和基本割集系统,以及最小生成树的概念和Kruskal算法。最后,根树的遍历方法和在算式转换中的应用也被提及。
摘要由CSDN通过智能技术生成

教材:《离散数学》第2版 屈婉玲 耿素云 张立昂 高等教育出版社
源文档高清截图在最后

第16章 树

16.1 无向树及其性质

1、连通而无回路的无向图叫做无向树,简称树。每个连通分量都是树的无向图称作森林。平凡图也成平凡树。在无向树中,悬挂顶点(度数为1的顶点)称树叶,度数大于等于2的顶点称作分支点。

2、树的充分必要条件:
设G(V, E)是n阶m条边的无向图,则下列命题等价:
【1】G是树。
【2】G中任意两个顶点之间存在唯一的路径。
【3】G无回路,且m = n – 1。
【4】G是连通的,且m = n – 1。
【5】G是连通的,且任何边均为桥。
【6】G中没有回路,但任何两个不同的顶点之间添加新的边后能产生唯一一个含新边的圈。
证明 【1】推【2】:由G的连通性以及“n阶图G中,如存在v到自身的回路,则一定存在v到自身的长度小于等于n的初级回路”可知,对任意的u,v∈V,u到v存在一条路径。若路径不是唯一的,设Γ1和Γ2都是u到v的路径,则Γ1和Γ2上的边就可以构成回路。这与树的定义矛盾。
【2】推【3】。首先证明G中无回路。若G存在关联某顶点v的环,则v到v存在长度为0和1的两条路径(初级回路是路径的特殊情况;顶点到自身都具有长度为0的一条路径),与已知矛盾。若G存在长度≥2的圈,则圈上任何两个顶点之间都存在两条不同的路径,也引起矛盾。
然后归纳证明m = n – 1。当n = 1时G为平凡图,结论成立。设n≤k时结论都成立,那么n = k + 1时结论也要成立。此时,设e = (u, v)为G的一条边,由于G无回路,所以u到v只有唯一的路径(否则任意两条路径均可形成回路),所以G – e为两个连通分量G1、G2。设ni,mi分别为Gi中的顶点数和边数,则显然ni≤k。由归纳假设,mi = ni – 1,i = 1,2。于是m = m1 + m2 + 1 = n1 + n2 – 2 + 1 = n – 1。得证。
【3】推【4】。只要证明G是连通的(注意:一个图是树,是该图连通且无回路的必要条件,现在证前者是后者的充分条件)。假设G不连通,则设G由s个连通分量G1,G2,……,Gs(s≥2)。又每个Gi均无回路,因此Gi都是树。由前面的证明,mi = ni – 1,于是在这里插入图片描述 。但s≥2,这与m = n – 1矛盾。
【4】推【5】。只要证G中每条边均为桥。对任意的e∈E,均有 |E(G – e)| = n – 1 – 1 = n – 2。由第14章习题50,G – e不是连通图,故e为桥。
【5】推【6】。由于G的每条边均为桥,因此G中无圈。(在圈中删掉任意一条边都不影响圈上任意两点的连通性)又由于G连通,所以G为树。所以G中任意两个不同顶点u,v之间存在唯一的路径Γ。设e是在u,v之间添加的新边,则Γ∪e是一个圈&#x

  • 4
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值