离散数学复习笔记——树

无向树

无向树:一个连通无回路的无向图

森林:每个连通分支都是树的无向图

树叶v d ( v ) = 1 d(v)=1 d(v)=1

分支点v d ( v ) ≥ 2 d(v)\ge2 d(v)2

平凡树:平凡图,既无树叶,也无分支点

六个等价定义

G是树(连通无回路) ⇔ \Harr G中任二顶点之间存在唯一路径 ⇔ \Harr G中无圈且 m = n − 1 m=n-1 m=n1

⇔ \Harr G连通且 m = n − 1 m=n-1 m=n1 ⇔ \Harr G连通且每条边均为桥 ⇔ \Harr G无圈,但在任二不同顶点之间增加新边,所得图含唯一的一个 圈

无向树的性质

定理9.2:任一n阶非平凡树至少有两片树叶

生成树

生成树T:T是G的生成子图,且T为树 (T与G顶点相同)

树枝:生成树的边

:G中的边但不是树的边

余树(补):G[E(G)-E(T)]

注意余数不一定是树

生成数的存在性定理

定理9.3:无向图G具有生成树当且仅当G是连通的

注意:连通图的生成树不唯一

基本回路 割集

基本回路:加弦,则生成树中有唯一的圈,该弦对应的圈称为基本回路

共有m-n+1条弦,则每条弦对应了一个基本回路,所有的基本回路的集合叫做基本回路系统

m-n+1为圈秩 ξ ( G ) \xi(G) ξ(G)

基本割集:取生成树的某一条树枝,该树枝和其他部分弦构成图G的割集,则共有n-1条树枝,对应n-1个基本割集构成的集合叫做基本割集系统,n-1为G的割集秩,记为 η ( G ) \eta(G) η(G)

G的生成树的个数 τ ( G ) \tau(G) τ(G)

定理9.6:G是n阶无向连通标定图,则对于G的任意非环边有

η ( G ) = η ( G − e ) + η ( G 收 缩 e ) \eta(G)=\eta(G-e)+\eta(G 收缩e) η(G)=η(Ge)+η(Ge)

定理9.7 η ( K n ) = n n − 2 ( n ≥ 2 ) \eta(K_n)=n^{n-2}(n\ge2) η(Kn)=nn2(n2)

环路空间 断集空间

环路:G中圈或若干个边不重的圈的并

定理9.11:设G为 无向连通图,T是G的任意一棵生成树,则G中任一回路或为T的基本回路或为若干个基本回路的环合

定理9.12:设G是n阶m条边的无向连通图,则 C 环 C_环 C Ω \varOmega Ω的m-n+1维的子空间

环路空间:对基本回路不断作对称差运算

断集:G图中的两部分点之间的边

注意:割集是断集,断集不一定是割集(不满足极小性)

定理9.16:设G为无向连通图,T是G的一棵生成树,则G中任一断集为T的基本割集或为若干个基本割集的对称差

定理9.17:G是n阶m条边的无向连通图,则 S 断 S_断 S Ω \varOmega Ω的n-1维子空间

根树

根数: 只有一个顶点入度为0,其余顶点入度为1

层高:从树根到点v的路径长度

树高:顶点的最大层数

家族树

  • 1
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值