Distance between subspacess

Distance between subspaces

1. Definition of distance between subspaces

How to describe the distance between subspaces? The canonical angles between subspaces can be used to define the distance between subspaces. And there are several equivalent ways to do this. Here I will talk is the definition used in the reference “Minimax sparse principal subspace estimation in high dimension”, which is based on the projection matrices of subpaces, because of the convenience to represent subspaces by there projector matrices.

Definition: Let E and F be d-dimensional subspaces of Rp with orthogonal projectors E and F. Denote the singular values of EF by s1,s2, . The canonical angles between E and F are the numbers

θk(E,F)=arcsin(sk)

for k=1,2,,d and the angleoperator between E and F is the d×d matrix
Θ(E,F)=diag(θ1,θ2,,θd)
.

2. Theory of the distance

Since the nonzero singular values of EF are the nonzero singular values of EF , each counted twice. (which is the Proposition 2.1 in “Minimax sparse principal subspace estimation in high dimension”). Thus

sinΘ(E,F)2F=k=1ds2k=EF2F=12EF2F

If we also assume that VE and VF are the orthogonal bases for subspaces E and F respectively. Then from the Proposition 2.2 in “Minimax sparse principal subspace estimation in high dimension”, we have

12infQVd.dVEVFQ2FsinΘ(E,F)2FinfQVd.dVEVFQ2F

This is to say the distance between two subspaces is equivalent to the minimal distance between their orthogonal bases.

3. Conclusion of distance

Let VEVp,d and EFVp,d be two column orthogonal matrix, which is to say EtE=FtF=Id , with right rotation. Then the following is true,

VEVF2FVEVtEVFVtFProjection matrices2F

4. Extension

If we assume that VE and VF span the d-dimensional principal subspaces (E,F) of ΣE and ΣF , then from the curvature lemma (lemma 4.2) given in “Minimax sparse principal subspace estimation in high dimension” , we have

sinΘ(E,F)2F=12VEVtEVFVtF2FΣE,VEVtEVFVtFλd(ΣE)λd+1(ΣE)

sinΘ(E,F)2F=12VEVtEVFVtF2FΣF,VFVtFVEVtEλd(ΣF)λd+1(ΣF)

Combining these together,

VEVtEVFVtF2F1δΣEΣF,VEVtEVFVtF1δΣEΣFFVEVtEVFVtFF

where δ=min{λd(ΣE)λd+1(ΣE),λd(ΣF)λd+1(ΣF)}
from which , we know

VEVtEVFVtFF1δΣEΣFF
.

Thus

VEVFOrthogonal bases2FVEVtEVFVtFProjection matrices2F1δΣEΣFSymmetric matricesF

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值