Minor, cofactor and adjoint matrix

这篇博客介绍了线性代数中的余子式、代数余子式(Cofactor)及其在计算行列式和矩阵求逆中的应用。详细讨论了一阶余子式的定义,以及如何通过Cofactor展开计算行列式,并阐述了伴随矩阵(adjoint matrix)在求解矩阵逆时的角色。
摘要由CSDN通过智能技术生成

1. Minor(余子式)

In linear algebra, a minor of a matrix A is the determinant of some smaller square matrix, cut down from A by removing one or more of its rows or columns.

1.1 First Minor(一阶余子式)

If A is a square matrix, then the minor of the entry in the i-th row and j-th column (also called the (i,j) minor, or a first minor) is the determinant of the submatrix formed by deleting the i-th row and j-th column. This number is often denoted Mij .

For a matrix B ,

B11B21B31B12B22B32B13B23B33

then first minor for

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值