For more detail, you can download the html file here.
Quiz 1
Question 1
The American Community Survey distributes downloadable data about United States communities. Download the 2006 microdata survey about housing for the state of Idaho using download.file() from here
and load the data into R. The code book, describing the variable names is here. How many housing units in this survey were worth more than $1,000,000?
- 2076
- 24
- 53
- 31
if(!file.exists("data")) dir.create("data")
fileUrl <- "https://d396qusza40orc.cloudfront.net/getdata%2Fdata%2Fss06hid.csv"
download.file(fileUrl, destfile = "./data/United States communities.csv")
data <- read.csv("./data/United States communities.csv")
sum(data[!is.na(data$VAL),]$VAL == 24)
QUestion 2
Using the data from question 1. Consider the var FES in the codebook. Which of the “tidy data” principles does this variable violate?
- Tidy data has one variable per column.
- Numeric values in tidy data can not represent categories.
- Tidy data has variable values that are internally consistent.
- Each variable in a tidy data set has been transformed to be interpretable.
Question 3
Download the Excel spreadsheet on Natural Gas Aquisition Program here. Read rows 18-23 and columns 7-15 into R and assign the result to a variable called “dat”. What is the value of:
sum(dat$Zip*dat$Ext,na.rm=T)
(original data source is here)
- NA
- 0
- 36534720
- 154339
if(!file.exists("data")) dir.create("data")
library(xlsx)
fileUrl <- "https://d396qusza40orc.cloudfront.net/getdata%2Fdata%2FDATA.gov_NGAP.xlsx"
download.file(fileUrl, destfile = "./data/Natural Gas Aquisition Program.xlsx", mode = "wb")
dateDownloaded <- date()
dat <- read.xlsx("./data/Natural Gas Aquisition Program.xlsx", sheetIndex = 1, rowIndex = 18:23, colIndex = 7:15, header = TRUE)
sum(dat$Zip*dat$Ext,na.rm=T)
Question 4
Read the XML data on Baltimore restaurants from [here](
https://d396qusza40orc.cloudfront.net/getdata%2Fdata%2Frestaurants.xml). How many restaurants have zipcode 21231?
- 181
- 100
- 127
- 17
if(!file.exists("data")) dir.create("data")
library(XML)
fileUrl <- "http://d396qusza40orc.cloudfront.net/getdata%2Fdata%2Frestaurants.xml"
doc <- xmlTreeParse(fileUrl, useInternal = TRUE)
rootNode <- xmlRoot(doc)
sum(xpathSApply(rootNode, "//zipcode", xmlValue) == "21231")
Question 5
The American Community Survey distributes downloadable data about United States communities. Download the 2006 microdata survey about housing for the state of Idaho using download.file() from here.Using the fread() command load the data into an R object DT Which of the following is the fastest way to calculate the average value of the variable pwgtp15 broken down by sex using the data.table package?
tapply(DT$pwgtp15,DT$SEX,mean)
DT[,mean(pwgtp15),by=SEX]
mean(DT[DT$SEX==1,]$pwgtp15); mean(DT[DT$SEX==2,]$pwgtp15)
mean(DT$pwgtp15,by=DT$SEX)
sapply(split(DT$pwgtp15,DT$SEX),mean)
rowMeans(DT)[DT$SEX==1]; rowMeans(DT)[DT$SEX==2]
# From slides, we can select the second one as solution. But here I will use systerm.time() function too see their time.
if(!file.exists("data")) dir.create("data")
fileUrl <- "https://d396qusza40orc.cloudfront.net/getdata%2Fdata%2Fss06pid.csv"
download.file(fileUrl, destfile = "United States communities.csv")
library(data.table)
DT <- fread("United States communities.csv")
system.time(tapply(DT$pwgtp15, DT$SEX, mean))
system.time(DT[, mean(pwgtp15), by = SEX])
system.time(mean(DT[DT$SE == 1, ]$pwgtp15)) + system.time(DT[DT$SEX == 2, ]$pwgtp15)
system.time(mean(DT$pwgtp15, by = DT$SEX))
system.time(sapply(split(DT$pwgtp15,DT$SEX),mean))
#system.time(rowMeans(DT)[DT$SEX==1]) + system.time(rowMeans(DT)[DT$SEX==2]) this is a wrong anwser