二分图总结

二分图是什么?

二分图 是指将所有点分成两个集合, 使得所有边只出现在集合之间, 那就是二分图

二分图的性质:

  1. 二分图一定能进行无矛盾的染色
  2. 二分图一定不含有奇数环
  3. 二分图不一定是连通图

二分图的判定问题, 一般常用的方法是染色法判定二分图, 相邻的两个点用不同的颜色染色, 只要某个点染色不成功就说明整个图不是二分图, 染色不成功等价于相邻的点染了相同的颜色

#include<bits/stdc++.h>

using namespace std;

const int N = 3e5 + 10;

int e[N], ne[N], h[N], idx, color[N], n, m;

void add(int a, int b)
{
    e[idx] = b, ne[idx] = h[a], h[a] = idx ++;
}
bool dfs(int u, int c)
{
    color[u] = c;  //染色
    
    for(int i = h[u]; ~i; i = ne[i])
    {
        int j = e[i];
        if(!color[j])  //未被染色
        {
            if(!dfs(j, 3 - c)) return false;  //染色失败
        }
        else if(color[j] == c) return false; //染色失败
    }
    return true; //染色成功
}

int main()
{
    cin >> n >> m;
    
    memset(h, -1, sizeof h);  //初始化头结点
    
    for(int i = 1; i <= m; i ++ )
    {
        int a, b;
        cin >> a >> b;
        add(a, b), add(b, a);  //建图
    }
    
    for(int i = 1; i <= n; i ++ )  //给每一个点染色
    if(!color[i])
    {
        if(!dfs(i, 1))
        {
            cout << "No\n";
            return 0;
        }
    }
    cout << "Yes\n";
}

二分图的最大匹配

一些必要的概念

匹配:在图论中,一个「匹配」是一个边的集合,其中任意两条边都没有公共顶点。
最大匹配:一个图所有匹配中,所含匹配边数最多的匹配,称为这个图的最大匹配。
完美匹配:如果一个图的某个匹配中,所有的顶点都是匹配点,那么它就是一个完美匹配。
交替路:从一个未匹配点出发,依次经过非匹配边、匹配边、非匹配边…形成的路径叫交替路。
增广路:从一个未匹配点出发,走交替路,如果途径另一个未匹配点(出发的点不算),则这条交替路称为增广路。

然后匈牙利算法的证明可以看这个博主, 讲的非常生动形象

证明

总结一下: 首先每个左节点预定右节点, 看右节点是否已经匹配, 如果已经匹配了,看他匹配的对象能不能匹配别人

#include<bits/stdc++.h>

using namespace std;

const int N = 1e5 + 10;

int e[N], ne[N], h[N], idx, match[N], n1, n2, m;
bool st[N];


void add(int a, int b)
{
    e[idx] = b, ne[idx] = h[a], h[a] = idx ++;
}

bool find(int x)
{
    for(int i = h[x]; ~i; i = ne[i])
    {
        int j = e[i];
        if(!st[j])
        {
            st[j] = true;  //预定
            if(!match[j] || find(match[j])) // 1.是否已经匹配 2.看能不能再匹配别人
            {
                match[j] = x;  //匹配成功
                return true;
            }
        }
    }
    return false;
}


int main()
{
    cin >> n1 >> n2 >> m;
    
    memset(h, -1, sizeof h); //初始化头节点
    
    for(int i = 1; i <= m; i ++ )   //建图
    {
        int a, b;
        cin >> a >> b;
        add(a, b);
    }
    
    int res = 0;
    
    for(int i = 1; i <= n1; i ++ )   //每一组匹配
    {
        memset(st, false, sizeof st);  //因为每轮预定情况不同,所以需要初始化
        if(find(i)) res ++;
    }
    
    cout << res << '\n';
}

常用结论

二分图不存在奇数环    ⟺    \iff 染色法不存在矛盾(证明略)
最大匹配数 = 最小点覆盖 = 总点数 - 最大独立集 = 总点数 - 最小路径覆盖
一个匹配是最大匹配    ⟺    \iff 不存在增广路径

最小点覆盖问题:
定义: 给我们一个图, 从中选出最少的点, 使得图中的每一条边至少有一个顶点被选

在二分图中 最小点覆盖 == 最大匹配数

最大独立集问题
定义: 给我们一个图, 从中选出最多的点, 使得选出的点之间没有边

在二分图中 最大独立集 == 总点数 - 最小点覆盖 == 总点数 - 最大匹配数

最小不相交路径覆盖问题
定义: 在有向无环图中, 用最少的互不相交的路径, 将所有点覆盖

在二分图中 最小不相交路径覆盖 == n - 最大匹配数

最小路径重复点覆盖
定义: 在有向无环图中, 用最少的路径,将所有点覆盖

在二分图中, 我们先将原图做一遍传递闭包, 然后再进行二分图的最大匹配再与总点数作差就可以得到答案

最大匹配数 = 最小点覆盖 = 总点数 - 最大独立集 = 总点数 - 最小路径覆盖

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

广西小蒟蒻

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值